Zobrazeno 1 - 10
of 1 189
pro vyhledávání: '"Tarján, P."'
While Dijkstra's algorithm has near-optimal time complexity for the problem of finding the shortest $st$-path, in practice, other algorithms are often superior on huge graphs. A prominent such example is the bidirectional search, which executes Dijks
Externí odkaz:
http://arxiv.org/abs/2410.14638
Jet modification via $\pi^0$-hadron correlations in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV
Autor:
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Adare, A., Afanasiev, S., Aidala, C., Ajitanand, N. N., Akiba, Y., Al-Bataineh, H., Alexander, J., Alfred, M., Aoki, K., Apadula, N., Aphecetche, L., Asai, J., Asano, H., Atomssa, E. T., Averbeck, R., Awes, T. C., Azmoun, B., Babintsev, V., Bai, M., Baksay, G., Baksay, L., Baldisseri, A., Bandara, N. S., Bannier, B., Barish, K. N., Barnes, P. D., Bassalleck, B., Basye, A. T., Bathe, S., Batsouli, S., Baublis, V., Baumann, C., Bazilevsky, A., Beaumier, M., Beckman, S., Belikov, S., Belmont, R., Bennett, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Bickley, A. A., Blankenship, B., Blau, D. S., Boissevain, J. G., Bok, J. S., Borel, H., Borisov, V., Boyle, K., Brooks, M. L., Bryslawskyj, J., Buesching, H., Bumazhnov, V., Bunce, G., Butsyk, S., Camacho, C. M., Campbell, S., Chang, B. S., Chang, W. C., Charvet, J. L., Chen, C. -H., Chen, D., Chernichenko, S., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Choudhury, R. K., Chujo, T., Chung, P., Churyn, A., Cianciolo, V., Citron, Z., Cole, B. A., Connors, M., Constantin, P., Corliss, R., Csanád, M., Csörgő, T., d'Enterria, D., Dahms, T., Dairaku, S., Danley, T. W., Das, K., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dietzsch, O., Dion, A., Diss, P. B., Donadelli, M., Doomra, V., Do, J. H., Drapier, O., Drees, A., Drees, K. A., Dubey, A. K., Durham, J. M., Durum, A., Dutta, D., Dzhordzhadze, V., Efremenko, Y. V., Ellinghaus, F., En'yo, H., Engelmore, T., Enokizono, A., Esha, R., Eyser, K. O., Fadem, B., Feege, N., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fleuret, F., Fokin, S. L., Fraenkel, Z., Frantz, J. E., Franz, A., Frawley, A. D., Fujiwara, K., Fukao, Y., Fusayasu, T., Gallus, P., Gal, C., Garg, P., Garishvili, I., Ge, H., Giordano, F., Glenn, A., Gong, H., Gonin, M., Gosset, J., Goto, Y., de Cassagnac, R. Granier, Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, T., Gustafsson, H. -Å., Hachiya, T., Henni, A. Hadj, Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Hanks, J., Han, R., Han, S. Y., Hartouni, E. P., Haruna, K., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Haslum, E., Hayano, R., Heffner, M., Hemmick, T. K., Hester, T., He, X., Hill, J. C., Hodges, A., Hohlmann, M., Hollis, R. S., Holzmann, W., Homma, K., Hong, B., Horaguchi, T., Hornback, D., Hoshino, T., Hotvedt, N., Huang, J., Ichihara, T., Ichimiya, R., Iinuma, H., Ikeda, Y., Imai, K., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Ishihara, M., Isobe, T., Issah, M., Isupov, A., Ivanishchev, D., Jacak, B. V., Jezghani, M., Jiang, X., Jin, J., Ji, Z., Johnson, B. M., Joo, K. S., Jouan, D., Jumper, D. S., Kajihara, F., Kametani, S., Kamihara, N., Kamin, J., Kanda, S., Kang, J. H., Kapustinsky, J., Kawall, D., Kazantsev, A. V., Kempel, T., Key, J. A., Khachatryan, V., Khanzadeev, A., Kijima, K. M., Kikuchi, J., Kimelman, B., Kim, B. I., Kim, C., Kim, D. H., Kim, D. J., Kim, E., Kim, E. -J., Kim, G. W., Kim, M., Kim, S. H., Kinney, E., Kiriluk, K., Kiss, Á., Kistenev, E., Kitamura, R., Klatsky, J., Klay, J., Klein-Boesing, C., Kleinjan, D., Kline, P., Koblesky, T., Kochenda, L., Komkov, B., Konno, M., Koster, J., Kotov, D., Kovacs, L., Kozlov, A., Kravitz, A., Král, A., Kunde, G. J., Kurgyis, B., Kurita, K., Kurosawa, M., Kweon, M. J., Kwon, Y., Kyle, G. S., Lai, Y. S., Lajoie, J. G., Layton, D., Lebedev, A., Lee, D. M., Lee, K. B., Lee, S., Lee, S. H., Lee, T., Leitch, M. J., Leite, M. A. L., Lenzi, B., Liebing, P., Lim, S. H., Litvinenko, A., Liu, H., Liu, M. X., Liška, T., Li, X., Lokos, S., Loomis, D. A., Love, B., Lynch, D., Maguire, C. F., Makdisi, Y. I., Makek, M., Malakhov, A., Malik, M. D., Manion, A., Manko, V. I., Mannel, E., Mao, Y., Masui, H., Matathias, F., Mašek, L., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Means, N., Meles, A., Mendoza, M., Meredith, B., Miake, Y., Mignerey, A. C., Mikeš, P., Miki, K., Milov, A., Mishra, D. K., Mishra, M., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Miyasaka, S., Mizuno, S., Mohanty, A. K., Montuenga, P., Moon, T., Morino, Y., Morreale, A., Morrison, D. P., Moukhanova, T. V., Mukhopadhyay, D., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagamiya, S., Nagashima, K., Nagle, J. L., Naglis, M., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakamiya, Y., Nakamura, T., Nakano, K., Nattrass, C., Netrakanti, P. K., Newby, J., Nguyen, M., Niida, T., Nishimura, S., Nouicer, R., Novitzky, N., Novák, T., Nukazuka, G., Nyanin, A. S., O'Brien, E., Oda, S. X., Ogilvie, C. A., Okada, K., Oka, M., Onuki, Y., Koop, J. D. Orjuela, Orosz, M., Osborn, J. D., Oskarsson, A., Ouchida, M., Ozawa, K., Pak, R., Palounek, A. P. T., Pantuev, V., Papavassiliou, V., Park, J., Park, J. S., Park, S., Park, W. J., Patel, M., Pate, S. F., Pei, H., Peng, J. -C., Pereira, H., Perepelitsa, D. V., Perera, G. D. N., Peresedov, V., Peressounko, D. Yu., Perry, J., Petti, R., Pinkenburg, C., Pinson, R., Pisani, R. P., Potekhin, M., Purschke, M. L., Purwar, A. K., Qu, H., Rakotozafindrabe, A., Rak, J., Ramson, B. J., Ravinovich, I., Read, K. F., Rembeczki, S., Reygers, K., Reynolds, D., Riabov, V., Riabov, Y., Richford, D., Rinn, T., Roach, D., Roche, G., Rolnick, S. D., Rosati, M., Rosendahl, S. S. E., Rosnet, P., Rowan, Z., Rubin, J. G., Rukoyatkin, P., Ružička, P., Rykov, V. L., Sahlmueller, B., Saito, N., Sakaguchi, T., Sakai, S., Sakashita, K., Sako, H., Samsonov, V., Sarsour, M., Sato, S., Sato, T., Sawada, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seele, J., Seidl, R., Semenov, A. Yu., Semenov, V., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shoji, K., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Silvestre, C., Sim, K. S., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Snowball, M., Soldatov, A., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Staley, F., Stankus, P. W., Stenlund, E., Stepanov, M., Ster, A., Stoll, S. P., Sugitate, T., Suire, C., Sukhanov, A., Sumita, T., Sun, J., Sun, Z., Sziklai, J., Takagui, E. M., Taketani, A., Tanabe, R., Tanaka, Y., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarján, P., Themann, H., Thomas, T. L., Tieulent, R., Timilsina, A., Todoroki, T., Togawa, M., Toia, A., Tomita, Y., Tomášek, L., Tomášek, M., Torii, H., Towell, C. L., Towell, R., Towell, R. S., Tram, V-N., Tserruya, I., Tsuchimoto, Y., Ujvari, B., Vale, C., Valle, H., van Hecke, H. W., Veicht, A., Velkovska, J., Vinogradov, A. A., Virius, M., Vrba, V., Vznuzdaev, E., Vértesi, R., Wang, X. R., Watanabe, Y., Watanabe, Y. S., Wei, F., Wessels, J., White, A. S., White, S. N., Winter, D., Wong, C. P., Woody, C. L., Wysocki, M., Xia, B., Xie, W., Xue, L., Yalcin, S., Yamaguchi, Y. L., Yamaura, K., Yang, R., Yanovich, A., Ying, J., Yokkaichi, S., Yoon, I., Yoo, J. H., Young, G. R., Younus, I., Yushmanov, I. E., Yu, H., Zajc, W. A., Zaudtke, O., Zelenski, A., Zhang, C., Zhou, S., Zolin, L., Zou, L.
Publikováno v:
Phys. Rev. C 110, 044901 (2024)
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4--12~GeV/$c$ and 0.5-
Externí odkaz:
http://arxiv.org/abs/2406.08301
Autor:
Haeupler, Bernhard, Hladík, Richard, Iacono, John, Rozhon, Vaclav, Tarjan, Robert, Tětek, Jakub
We consider the problem of sorting $n$ items, given the outcomes of $m$ pre-existing comparisons. We present a simple and natural deterministic algorithm that runs in $O(m+\log T)$ time and does $O(\log T)$ comparisons, where $T$ is the number of tot
Externí odkaz:
http://arxiv.org/abs/2404.04552
An electric car equipped with a battery of a finite capacity travels on a road network with an infrastructure of charging stations. Each charging station has a possibly different cost per unit of energy. Traversing a given road segment requires a spe
Externí odkaz:
http://arxiv.org/abs/2403.16936
Publikováno v:
Proceedings of the 41st International Conference on Machine Learning (2024) 37396-37412
Transformers have emerged as the backbone of large language models (LLMs). However, generation remains inefficient due to the need to store in memory a cache of key-value representations for past tokens, whose size scales linearly with the input sequ
Externí odkaz:
http://arxiv.org/abs/2403.09636
This paper proves that Dijkstra's shortest-path algorithm is universally optimal in both its running time and number of comparisons when combined with a sufficiently efficient heap data structure. Universal optimality is a powerful beyond-worst-case
Externí odkaz:
http://arxiv.org/abs/2311.11793
We define simple variants of zip trees, called zip-zip trees, which provide several advantages over zip trees, including overcoming a bias that favors smaller keys over larger ones. We analyze zip-zip trees theoretically and empirically, showing, e.g
Externí odkaz:
http://arxiv.org/abs/2307.07660
Autor:
Sinnamon, Corwin, Tarjan, Robert E.
Since the invention of the pairing heap by Fredman et al., it has been an open question whether this or any other simple "self-adjusting" heap supports decrease-key operations on $n$-item heaps in $O(\log\log n)$ time. Using powerful new techniques,
Externí odkaz:
http://arxiv.org/abs/2307.02772
A weighted directed graph $G=(V,A,c)$, where $A\subseteq V\times V$ and $c:A\to R$, describes a road network in which an electric car can roam. An arc $uv$ models a road segment connecting the two vertices $u$ and $v$. The cost $c(uv)$ of an arc $uv$
Externí odkaz:
http://arxiv.org/abs/2305.19015
Autor:
Tarjan, Robert E., Zwick, Uri
A \emph{resizable array} is an array that can \emph{grow} and \emph{shrink} by the addition or removal of items from its end, or both its ends, while still supporting constant-time \emph{access} to each item stored in the array given its \emph{index}
Externí odkaz:
http://arxiv.org/abs/2211.11009