Zobrazeno 1 - 10
of 162
pro vyhledávání: '"Tardif Claude"'
Autor:
Tardif Claude Patricia
Publikováno v:
SHS Web of Conferences, Vol 191, p 06012 (2024)
Cette contribution propose une nouvelle approche de la visualité du texte littéraire, sans tenir compte ni de sa disposition spatiale ni de « l’énonciation éditoriale ». Mais alors que reste-t-il de la forme visuelle du texte ? Il reste les p
Externí odkaz:
https://doaj.org/article/bee91a0c0a9445619c0249edd34397fb
Autor:
Bosica John, Tardif Claude
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 35, Iss 1, Pp 197-202 (2015)
The Erdős-Faber-Lovász conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where
Externí odkaz:
https://doaj.org/article/2a395d81c6d44d56845f67295459faff
Autor:
Tardif, Claude
Publikováno v:
In Journal of Combinatorial Theory, Series B September 2024 168:1-10
Autor:
Tardif, Claude, Zhu, Xuding
We prove that $\min\{\chi(G), \chi(H)\} - \chi(G\times H)$ can be arbitrarily large, and that if Stahl's conjecture on the multichromatic number of Kneser graphs holds, then $\min\{\chi(G), \chi(H)\}/\chi(G\times H) \leq 1/2 + \epsilon$ for large val
Externí odkaz:
http://arxiv.org/abs/1906.03748
Autor:
Tardif, Claude, Wrochna, Marcin
A graph K is multiplicative if a homomorphism from any product G x H to K implies a homomorphism from G or from H. Hedetniemi's conjecture states that all cliques are multiplicative. In an attempt to explore the boundaries of current methods, we inve
Externí odkaz:
http://arxiv.org/abs/1808.04778
The arc graph $\delta(G)$ of a digraph $G$ is the digraph with the set of arcs of $G$ as vertex-set, where the arcs of $\delta(G)$ join consecutive arcs of $G$. In 1981, Poljak and R\"{o}dl characterised the chromatic number of $\delta(G)$ in terms o
Externí odkaz:
http://arxiv.org/abs/1610.01259
Publikováno v:
Logical Methods in Computer Science, Volume 13, Issue 1 (January 23, 2017) lmcs:2603
We investigate a correspondence between the complexity hierarchy of constraint satisfaction problems and a hierarchy of logical compactness hypotheses for finite relational structures. It seems that the harder a constraint satisfaction problem is, th
Externí odkaz:
http://arxiv.org/abs/1609.05221
Autor:
Foniok, Jan, Tardif, Claude
We survey results on Hedetniemi's conjecture which are connected to adjoint functors in the "thin" category of graphs, and expose the obstacles to extending these results.
Comment: 17 pages
Comment: 17 pages
Externí odkaz:
http://arxiv.org/abs/1608.02918
We investigate group-theoretic "signatures" of odd cycles of a graph, and their connections to topological obstructions to 3-colourability. In the case of signatures derived from free groups, we prove that the existence of an odd cycle with trivial s
Externí odkaz:
http://arxiv.org/abs/1601.07856
We prove that the coindex of the box complex $\mathrm{B}(H)$ of a graph $H$ can be measured by the generalised Mycielski graphs which admit a homomorphism to it. As a consequence, we exhibit for every graph $H$ a system of linear equations solvable i
Externí odkaz:
http://arxiv.org/abs/1601.04642