Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Tarchi, Mohamed Chaouki"'
Publikováno v:
Math. Commun. 29 (2024), 163-176
We consider real univariate degree $d$ real-rooted polynomials with non-vanishing coefficients. Descartes' rule of signs implies that such a polynomial has $\tilde{c}$ positive and $\tilde{p}$ negative roots counted with multiplicity, where $\tilde{c
Externí odkaz:
http://arxiv.org/abs/2310.14698
Publikováno v:
Comptes Rendus, Math\'ematique Volume 362 (2024), p. 863-881
The {\em sign pattern} defined by the real polynomial $Q:=\Sigma _{j=0}^da_jx^j$, $a_j\neq 0$, is the string $\sigma (Q):=({\rm sgn(}a_d{\rm )},\ldots ,{\rm sgn(}a_0{\rm )})$. The quantities $pos$ and $neg$ of positive and negative roots of $Q$ satis
Externí odkaz:
http://arxiv.org/abs/2302.04540
Publikováno v:
The Graduate Journal of Mathematics, Volume 6, Issue 1 (2021), 60-72
We consider the set of monic degree $d$ real univariate polynomials $Q_d=x^d+\sum_{j=0}^{d-1}a_jx^j$ and its {\em hyperbolicity domain} $\Pi_d$, i.e. the subset of values of the coefficients $a_j$ for which the polynomial $Q_d$ has all roots real. Th
Externí odkaz:
http://arxiv.org/abs/2012.04299
Publikováno v:
Mathematical Communications; 2024, Vol. 29 Issue 2, p163-176, 14p