Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Taoufik Hmidi"'
Autor:
Taoufik, Hmidi
In this paper, we address the problem of weak solutions of Yudovich type for the inviscid MHD equations in two dimensions. The local-in-time existence and uniqueness of these solutions sound to be hard to achieve due to some terms involving Riesz tra
Externí odkaz:
http://arxiv.org/abs/1401.6326
Autor:
Taoufik Hmidi, Dong Li
Publikováno v:
Research in PDEs and Related Fields ISBN: 9783031142673
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::47c3daa659c4c2c11482d352e5254b69
https://doi.org/10.1007/978-3-031-14268-0_4
https://doi.org/10.1007/978-3-031-14268-0_4
Dynamics of one-fold symmetric patches for the aggregation equation and collapse to singular measure
Autor:
Dong Li, Taoufik Hmidi
Publikováno v:
Analysis & PDE
Analysis & PDE, 2019, 12 (8), pp.2003-2065. ⟨10.2140/apde.2019.12.2003⟩
Analysis & PDE, Mathematical Sciences Publishers, 2019, 12 (8), pp.2003-2065. ⟨10.2140/apde.2019.12.2003⟩
Anal. PDE 12, no. 8 (2019), 2003-2065
Analysis & PDE, 2019, 12 (8), pp.2003-2065. ⟨10.2140/apde.2019.12.2003⟩
Analysis & PDE, Mathematical Sciences Publishers, 2019, 12 (8), pp.2003-2065. ⟨10.2140/apde.2019.12.2003⟩
Anal. PDE 12, no. 8 (2019), 2003-2065
We are concerned with the dynamics of one fold symmetric patches for the two-dimensional aggregation equation associated to the Newtonian potential. We reformulate a suitable graph model and prove a local well-posedness result in sub-critical and cri
Autor:
Taoufik Hmidi, Zineb Hassainia
Publikováno v:
Discrete & Continuous Dynamical Systems-A
Discrete & Continuous Dynamical Systems-A, 2021, 41 (4), pp.1939-1969. ⟨10.3934/dcds.2020348⟩
Discrete & Continuous Dynamical Systems-A, 2021, 41 (4), pp.1939-1969. ⟨10.3934/dcds.2020348⟩
In this paper, we study the existence of co-rotating and counter-rotating unequal-sized pairs of simply connected patches for Euler equations. In particular, we prove the existence of curves of steadily co-rotating and counter-rotating asymmetric vor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a909d4242329b9db632fde79756ae58
https://hal.archives-ouvertes.fr/hal-03163100
https://hal.archives-ouvertes.fr/hal-03163100
Publikováno v:
Archive for Rational Mechanics and Analysis
Archive for Rational Mechanics and Analysis, 2020, 238 (2), pp.929-1085. ⟨10.1007/s00205-020-01561-z⟩
Archive for Rational Mechanics and Analysis, Springer Verlag, 2020, 238 (2), pp.929-1085. ⟨10.1007/s00205-020-01561-z⟩
Archive for Rational Mechanics and Analysis, 2020, 238 (2), pp.929-1085. ⟨10.1007/s00205-020-01561-z⟩
Archive for Rational Mechanics and Analysis, Springer Verlag, 2020, 238 (2), pp.929-1085. ⟨10.1007/s00205-020-01561-z⟩
This paper concerns the study of some special ordered structures in turbulent flows. In particular, a systematic and relevant methodology is proposed to construct non trivial and non radial rotating vortices with non necessarily uniform densities and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63faf08e137a38dea3ed92b8cc38a330
https://hal.science/hal-01872557/file/lastversionseptem.pdf
https://hal.science/hal-01872557/file/lastversionseptem.pdf
Autor:
Taoufik Hmidi, Kaïs Ammari
Publikováno v:
Dynamics of Partial Differential Equations
Dynamics of Partial Differential Equations, International Press, 2021, 18 (1), pp.1-10. ⟨10.4310/DPDE.2021.v18.n1.a1⟩
Dynamics of Partial Differential Equations, 2021, 18 (1), pp.1-10. ⟨10.4310/DPDE.2021.v18.n1.a1⟩
Dynamics of Partial Differential Equations, International Press, 2021, 18 (1), pp.1-10. ⟨10.4310/DPDE.2021.v18.n1.a1⟩
Dynamics of Partial Differential Equations, 2021, 18 (1), pp.1-10. ⟨10.4310/DPDE.2021.v18.n1.a1⟩
The main objective of this paper is to study the time decay of transport-diffusion equation with inhomogeneous localized damping in the multi-dimensional torus. The drift is governed by an autonomous Lipschitz vector field and the diffusion by the st
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a8f8904606c3e1acc0b8cd56eb908f4
http://arxiv.org/abs/2004.07712
http://arxiv.org/abs/2004.07712
Autor:
Taoufik Hmidi, Joan Mateu
Publikováno v:
Journées équations aux dérivées partielles. :1-16
Autor:
Taoufik Hmidi, Dong Li
Publikováno v:
Dynamics of Partial Differential Equations. 14:1-4
We show that smallness of $\dot B^{-1}_{\infty,\infty}$ norm of solution to $d$-dimensional ($d\ge 3$) incompressible Navier-Stokes prevents blowups.
Publikováno v:
Analysis & PDE
Analysis & PDE, Mathematical Sciences Publishers, 2016, 9 (7), pp.1609-1670. ⟨10.2140/apde.2016.9.1609⟩
Analysis & PDE, Mathematical Sciences Publishers, 2016, 9 (7), pp.1609-1670. 〈10.2140/apde.2016.9.1609〉
Anal. PDE 9, no. 7 (2016), 1609-1670
Analysis & PDE, 2016, 9 (7), pp.1609-1670. ⟨10.2140/apde.2016.9.1609⟩
Analysis & PDE, Mathematical Sciences Publishers, 2016, 9 (7), pp.1609-1670. ⟨10.2140/apde.2016.9.1609⟩
Analysis & PDE, Mathematical Sciences Publishers, 2016, 9 (7), pp.1609-1670. 〈10.2140/apde.2016.9.1609〉
Anal. PDE 9, no. 7 (2016), 1609-1670
Analysis & PDE, 2016, 9 (7), pp.1609-1670. ⟨10.2140/apde.2016.9.1609⟩
In this paper, we prove the existence of $m$-fold rotating patches for the Euler equations in the disc, for both simply-connected and doubly-connected cases. Compared to the planar case, the rigid boundary introduces rich dynamics for the lowest symm
Publikováno v:
Archive for Rational Mechanics and Analysis
Archive for Rational Mechanics and Analysis, 2019, 231 (3), pp.1853-1915. ⟨10.1007/s00205-018-1312-7⟩
Archive for Rational Mechanics and Analysis, Springer Verlag, 2019, 231 (3), pp.1853-1915. ⟨10.1007/s00205-018-1312-7⟩
Archive for Rational Mechanics and Analysis, 2019, 231 (3), pp.1853-1915. ⟨10.1007/s00205-018-1312-7⟩
Archive for Rational Mechanics and Analysis, Springer Verlag, 2019, 231 (3), pp.1853-1915. ⟨10.1007/s00205-018-1312-7⟩
We study analytical and numerical aspects of the bifurcation diagram of simply-connected rotating vortex patch equilibria for the quasi-geostrophic shallow-water (QGSW) equations. The QGSW equations are a generalisation of the Euler equations and con
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::42c5997c991196fb14f1c0b36ec10f58
https://hal.science/hal-01679400/document
https://hal.science/hal-01679400/document