Zobrazeno 1 - 10
of 164
pro vyhledávání: '"Tao Xiangxing"'
In this paper, our main purpose is to establish a weak factorization of the classical Hardy spaces in terms of a multilinear Calder\'on-Zygmund operator on the ball Banach function spaces. Furthermore, a new characterization of the BMO space via the
Externí odkaz:
http://arxiv.org/abs/2411.06717
Autor:
Tao Xiangxing, Zhang Qiange
Publikováno v:
Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-21 (2021)
Abstract Let ( X , d , μ ) $(\mathcal{X}, d, \mu )$ be a non-homogeneous metric measure space, which satisfies the geometrically doubling condition and the upper doubling condition. In this paper, the authors prove the boundedness in L p ( μ ) $L^{
Externí odkaz:
https://doaj.org/article/d478eb7014564afa8f185db7bc924c7e
In this paper, the authors consider the endpoint estimates for the maximal Calder\'on commutator defined by $$T_{\Omega,\,a}^*f(x)=\sup_{\epsilon>0}\Big|\int_{|x-y|>\epsilon}\frac{\Omega(x-y)}{|x-y|^{d+1}} \big(a(x)-a(y)\big)f(y)dy\Big|,$$ where $\Om
Externí odkaz:
http://arxiv.org/abs/2403.15758
Autor:
Tao, Xiangxing, Hu, Guoen
Let $\Omega$ be homogeneous of degree zero, integrable on $S^{d-1}$ and have mean value zero, $T_{\Omega}$ be the homogeneous singular integral operator with kernel $\frac{\Omega(x)}{|x|^d}$ and $T_{\Omega}^*$ be the maximal operator associated to $T
Externí odkaz:
http://arxiv.org/abs/2305.07832
Let $k\in\mathbb{N}$, $\Omega$ be homogeneous of degree zero, integrable on $S^{d-1}$ and have vanishing moment of order $k$, $a$ be a function on $\mathbb{R}^d$ such that $\nabla a\in L^{\infty}(\mathbb{R}^d)$, and $T_{\Omega,\,a;k}$ be the $d$-dime
Externí odkaz:
http://arxiv.org/abs/2203.11541
Let $\Omega$ be homogeneous of degree zero, have vanishing moment of order one on the unit sphere $\mathbb {S}^{d-1}$($d\ge 2$). In this paper, our object of investigation is the following rough non-standard singular integral operator $$T_{\Omega,\,A
Externí odkaz:
http://arxiv.org/abs/2203.05249
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 March 2024 531(1) Part 1
In this paper, we give the definability of bilinear singular and fractional integral operators on Morrey-Banach space, as well as their commutators and we prove the boundedness of such operators on Morrey-Banach spaces. Moreover, the necessary condit
Externí odkaz:
http://arxiv.org/abs/2011.01167
Autor:
Hu, Guoen, Tao, Xiangxing
Let $\Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{d-1}$, $T_{\Omega}$ be the homogeneous singular integral operator with kernel $\frac{\Omega(x)}{|x|^d}$ and $T_{\Omega,\,b}$ be the commutator of $T_{\Omega}
Externí odkaz:
http://arxiv.org/abs/2009.11650
Let $\Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{n-1}$, $T_{\Omega}$ be the convolution singular integral operator with kernel $\frac{\Omega(x)}{|x|^n}$. For $b\in{\rm BMO}(\mathbb{R}^n)$, let $T_{\Omega,\,
Externí odkaz:
http://arxiv.org/abs/2005.04614