Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Tanya R Cully"'
Autor:
James Anthony Loehr, Shang Wang, Tanya R Cully, Rituraj Pal, Irina V Larina, Kirill V Larin, George G Rodney
Publikováno v:
eLife, Vol 11 (2022)
Externí odkaz:
https://doaj.org/article/0d8404561d0645fdad5e36648483aa2f
Autor:
James Anthony Loehr, Shang Wang, Tanya R Cully, Rituraj Pal, Irina V Larina, Kirill V Larin, George G Rodney
Publikováno v:
eLife, Vol 7 (2018)
Skeletal muscle from mdx mice is characterized by increased Nox2 ROS, altered microtubule network, increased muscle stiffness, and decreased muscle/respiratory function. While microtubule de-tyrosination has been suggested to increase stiffness and N
Externí odkaz:
https://doaj.org/article/9e36ae2446184f9694041650fe83a4b8
Autor:
John Thundyil, Silvia Manzanero, Dale Pavlovski, Tanya R Cully, Ker-Zhing Lok, Alexander Widiapradja, Prasad Chunduri, Dong-Gyu Jo, Chie Naruse, Masahide Asano, Bradley S Launikonis, Christopher G Sobey, Mark G Coulthard, Thiruma V Arumugam
Publikováno v:
PLoS ONE, Vol 8, Iss 1, p e53528 (2013)
Ephrin (Eph) signaling within the central nervous system is known to modulate axon guidance, synaptic plasticity, and to promote long-term potentiation. We investigated the potential involvement of EphA2 receptors in ischemic stroke-induced brain inf
Externí odkaz:
https://doaj.org/article/1ea0b0573310427a9bbbd38bfe69e1bc
Autor:
Luis A. Gonano, Hamish M. Aitken-Buck, Akash D. Chakraborty, Luke P.I. Worthington, Tanya R. Cully, Regis R. Lamberts, Martin G. Vila-Petroff, Peter P. Jones
Background: The cGMP-dependent protein kinase G (PKG) phosphorylates the cardiac ryanodine receptor (RyR2) in vitro. We aimed to determine whether modulation of endogenous PKG alters RyR2-mediated spontaneous Ca²⁺ release and whether this effect i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7049e256f98bccd5e77d5b2fd2515417
http://sedici.unlp.edu.ar/handle/10915/154468
http://sedici.unlp.edu.ar/handle/10915/154468
Autor:
Tanya R. Cully, George G. Rodney
Publikováno v:
Redox Biology, Vol 36, Iss, Pp 101557-(2020)
Redox Biology
Redox Biology
The ability for skeletal muscle to perform optimally can be affected by the regulation of Ca2+ within the triadic junctional space at rest. Reactive oxygen species impact muscle performance due to changes in oxidative stress, damage and redox regulat
Publikováno v:
Journal of General Physiology. 150:95-110
The complex membrane structure of the tubular system (t-system) in skeletal muscle fibers is open to the extracellular environment, which prevents measurements of H+ movement across its interface with the cytoplasm by conventional methods. Consequent
Autor:
Catherine D. Wingate, Christopher John Barclay, Bradley S. Launikonis, Tanya R. Cully, Anthony J. Bakker
Publikováno v:
Journal of General Physiology. 149:323-334
Fast-twitch skeletal muscle fibers are often exposed to motor neuron double discharges (≥200 Hz), which markedly increase both the rate of contraction and the magnitude of the resulting force responses. However, the mechanism responsible for these
Autor:
Rui Li, Shyuan T. Ngo, Kevin Lee, Juan C. Calderón, Tanya R. Cully, Michael B. Stout, Frederik J. Steyn
Publikováno v:
The Journal of Physiology. 594:7197-7213
Metabolic dysfunction in skeletal muscle contributes to the aetiology and development of muscle diseases and metabolic diseases. As such, assessment of skeletal muscle cellular bioenergetics provides a powerful means to understand the role of skeleta
Autor:
Tanya R. Cully, Bradley S. Launikonis
Publikováno v:
American Journal of Physiology-Cell Physiology. 310:C673-C680
The mouse model of Duchenne muscular dystrophy, the mdx mouse, displays changes in Ca2+ homeostasis that may lead to the pathology of the muscle. Here we examine the activation of store overload-induced Ca2+ release (SOICR) in mdx muscle. The activat
Publikováno v:
The Journal of Physiology. 594:2795-2810
KEY POINTS Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that a