Zobrazeno 1 - 10
of 338
pro vyhledávání: '"Tankus A"'
Autor:
Levit, Vadim E., Tankus, David
A graph $G$ is well-covered if all maximal independent sets are of the same cardinality. Let $w:V(G) \longrightarrow\mathbb{R}$ be a weight function. Then $G$ is $w$-well-covered if all maximal independent sets are of the same weight. An edge $xy \in
Externí odkaz:
http://arxiv.org/abs/2403.14824
Autor:
Levit, Vadim E., Tankus, David
Let $G$ be a graph. A set $S \subseteq V(G)$ is independent if its elements are pairwise non-adjacent. A vertex $v \in V(G)$ is shedding if for every independent set $S \subseteq V(G) \setminus N[v]$ there exists $u \in N(v)$ such that $S \cup \{u\}$
Externí odkaz:
http://arxiv.org/abs/2306.17272
Autor:
Sheth, Janaki, Tankus, Ariel, Tran, Michelle, Pouratian, Nader, Fried, Itzhak, Speier, William
Brain-Computer Interfaces (BCI) help patients with faltering communication abilities due to neurodegenerative diseases produce text or speech output by direct neural processing. However, practical implementation of such a system has proven difficult
Externí odkaz:
http://arxiv.org/abs/1907.04265
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Levit, Vadim E., Tankus, David
A graph $G$ is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function $w$ is defined on its vertices. Then $G$ is $w$-well-covered if all maximal independent sets are of the same weight. For every
Externí odkaz:
http://arxiv.org/abs/1811.04433
Autor:
Levit, Vadim E., Tankus, David
A graph $G$ is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function $w$ is defined on its vertices. Then $G$ is $w$-well-covered if all maximal independent sets are of the same weight. For every
Externí odkaz:
http://arxiv.org/abs/1811.04429
Autor:
Tankus, David
Let $B$ be an induced complete bipartite subgraph of $G$ on vertex sets of bipartition $B_{X}$ and $B_{Y}$. The subgraph $B$ is {\it generating} if there exists an independent set $S$ such that each of $S \cup B_{X}$ and $S \cup B_{Y}$ is a maximal i
Externí odkaz:
http://arxiv.org/abs/1808.10137
Autor:
Levit, Vadim E.1 (AUTHOR) levitv@ariel.ac.il, Tankus, David2 (AUTHOR)
Publikováno v:
Theory of Computing Systems. Dec2023, Vol. 67 Issue 6, p1197-1208. 12p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Krom, Aaron J., Marmelshtein, Amit, Gelbard-Sagiv, Hagar, Tankus, Ariel, Hayat, Hanna, Hayat, Daniel, Matot, Idit, Strauss, Ido, Fahoum, Firas, Soehle, Martin, Boström, Jan, Mormann, Florian, Fried, Itzhak, Nir, Yuval
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2020 May . 117(21), 11770-11780.
Externí odkaz:
https://www.jstor.org/stable/26931003