Zobrazeno 1 - 10
of 604
pro vyhledávání: '"Tang Chun-Lei"'
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 305-330 (2024)
In this article, we study the following Kirchhoff equation with combined nonlinearities: −a+b∫R4∣∇u∣2dxΔu+λu=μ∣u∣q−2u+∣u∣2u,inR4,∫R4∣u∣2dx=c2,\left\{\begin{array}{l}-\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb
Externí odkaz:
https://doaj.org/article/40d8fc1b57574a668def043ea7e26822
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 7183-7219 (2024)
This article is devoted to studying the existence of positive solutions to the following fractional Choquard equation: (−Δ)su+u=∫Ω∣u(y)∣p∣x−y∣N−αdy∣u∣p−2u+ε∫Ω∣u(y)∣2α,s*∣x−y∣N−αdy∣u∣2α,s*−2u,inΩ,u=0,
Externí odkaz:
https://doaj.org/article/a9c9c780a50547ddaac0878ff6b41be8
Publikováno v:
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 623-727 (2023)
In this article, we study the following Klein-Gordon-Maxwell system: −Δu−(2ω+ϕ)ϕu=g(u),inR3,Δϕ=(ω+ϕ)u2,inR3,\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{l}-\Delta u-\left(2\omega +\phi )\phi u=g\left(u),\hspace{1.0em}{\rm{in}}\hspa
Externí odkaz:
https://doaj.org/article/aedf81a330524032932f84ca5e505fb5
Publikováno v:
Advanced Nonlinear Studies, Vol 22, Iss 1, Pp 619-634 (2022)
We study the existence of solutions for the quasilinear Schrödinger equation with the critical exponent and steep potential well. By using a change of variables, the quasilinear equations are reduced to a semilinear one, whose associated functionals
Externí odkaz:
https://doaj.org/article/b79b5785070440c18ad65ca3f39266e8
Autor:
Chen Xiao-Ping, Tang Chun-Lei
Publikováno v:
Advanced Nonlinear Studies, Vol 22, Iss 1, Pp 390-415 (2022)
In this article, we investigate the existence of least energy sign-changing solutions for the following Schrödinger-Poisson system −Δu+V(x)u+K(x)ϕu=f(u),x∈R3,−Δϕ=K(x)u2,x∈R3,\left\{\begin{array}{ll}-\Delta u+V\left(x)u+K\left(x)\phi u=f\
Externí odkaz:
https://doaj.org/article/35bf8d2b784d4803812301ce17c6b924
Publikováno v:
Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 907-920 (2022)
In the present paper, a class of Schrödinger equations is investigated, which can be stated as −Δu+V(x)u=f(u), x∈ℝN.- \Delta u + V(x)u = f(u),\;\;\;\;x \in {{\rm{\mathbb R}}^N}. If the external potential V is radial and coercive, then we give
Externí odkaz:
https://doaj.org/article/a64999a364f24459ac8a9713c722b600
In present paper, we study the limit behavior of normalized ground states for the following mass critical Kirchhoff equation $$ \left\{\begin{array}{ll} -(a+b\int_{\Omega}|\nabla u|^2\mathrm{d}x)\Delta u+V(x)u=\mu u+\beta^*|u|^{\frac{8}{3}}u &\mbox{i
Externí odkaz:
http://arxiv.org/abs/2409.05130
Publikováno v:
Advanced Nonlinear Studies, Vol 21, Iss 1, Pp 135-154 (2021)
In this paper, we investigate the non-autonomous Choquard equation
Externí odkaz:
https://doaj.org/article/8de702c0a37341f28f19a955ce1eda17
Autor:
Chen, Xiao-Ping, Tang, Chun-Lei
This paper focuses on remainder estimates of the magnetic $L^p$-Hardy inequalities for $1
Externí odkaz:
http://arxiv.org/abs/2408.17249
Autor:
Chen, Xiao-Ping, Tang, Chun-Lei
This paper focuses on optimal constants and optimizers of the second order Caffarelli-Kohn-Nirenberg inequalities. Firstly, we aim to study optimal constants and optimizers for the following second order Caffarelli-Kohn-Nirenberg inequality in radial
Externí odkaz:
http://arxiv.org/abs/2405.06898