Zobrazeno 1 - 10
of 200
pro vyhledávání: '"Tang, Pengcheng"'
Autor:
Guo, Yuting, Tang, Pengcheng
It is well known that the Hilbert matrix operator $\mathcal {H}$ is bounded from $H^{\infty}$ to the mean Lipschitz spaces $\Lambda^{p}_{\frac{1}{p}}$ for all $1
Externí odkaz:
http://arxiv.org/abs/2410.18682
Autor:
Tang, Pengcheng
Let $\mu$ be a finite positive Borel measure on $[0,1)$ and $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n} \in H(\mathbb{D})$. For $0<\alpha<\infty$, the generalized Ces\`aro-like operator $\mathcal{C}_{\mu,\alpha}$ is defined by $$ \mathcal {C}_{\mu,\alpha}(f)
Externí odkaz:
http://arxiv.org/abs/2309.02717
Autor:
Tang, Pengcheng
Let $\mu$ be a finite positive Borel measure on the interval $[0, 1)$ and $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n} \in H(\mathbb{D})$. The Ces\`aro-like operator is defined by $$ \mathcal {C}_{\mu} (f)(z)=\sum^\infty_{n=0}\left(\mu_n\sum^n_{k=0}a_k\right)
Externí odkaz:
http://arxiv.org/abs/2305.03333
In this paper, the authors first consider the bidirectional estimates of several typical integrals. As some applications of these integral estimates, the authors investigate the pointwise multipliers from the normal weight general function space $F(p
Externí odkaz:
http://arxiv.org/abs/2209.03029
Autor:
Xu, Si, Tang, Pengcheng
Let $\mu$ be a finite positive Borel measure on the interval $[0,1)$ and $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n} \in H(\mathbb{D})$. The Ce\`{a}sro-like operator is defined by $$ \mathcal{C}_\mu(f)(z)=\sum^\infty_{n=0}\mu_n\left(\sum^n_{k=0}a_k\right)z^n
Externí odkaz:
http://arxiv.org/abs/2208.11921
Autor:
Tang, Pengcheng, Zhang, Xuejun
Publikováno v:
Math. Meth. Appl. Sci. 2023
Let $\mu$ be a finite Borel measure on $[0,1)$. In this paper, we consider the generalized integral type Hilbert operator $$\mathcal{I}_{\mu_{\alpha+1}}(f)(z)=\int_{0}^{1}\frac{f(t)}{(1-tz)^{\alpha+1}}d\mu(t)\ \ \ (\alpha>-1).$$ The operator $\mathca
Externí odkaz:
http://arxiv.org/abs/2208.11452
Autor:
Tang, Pengcheng, Zhang, Xuejun
Let $\mu$ be a positive Borel measure on $[0,1)$. If $f \in H(\mathbb{D})$ and $\alpha>-1$, the generalized integral type Hilbert operator defined as follows: $$\mathcal{I}_{\mu_{\alpha+1}}(f)(z)=\int^1_{0} \frac{f(t)}{(1-tz)^{\alpha+1}}d\mu(t), \ \
Externí odkaz:
http://arxiv.org/abs/2208.10747
Publikováno v:
In Industrial Crops & Products 15 December 2024 222 Part 4
Publikováno v:
In Global and Planetary Change December 2024 243
Publikováno v:
In Industrial Crops & Products 1 December 2024 221