Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Tang, Jiakai"'
Autor:
Tang, Jiakai, Gao, Heyang, Pan, Xuchen, Wang, Lei, Tan, Haoran, Gao, Dawei, Chen, Yushuo, Chen, Xu, Lin, Yankai, Li, Yaliang, Ding, Bolin, Zhou, Jingren, Wang, Jun, Wen, Ji-Rong
With the rapid advancement of large language models (LLMs), recent years have witnessed many promising studies on leveraging LLM-based agents to simulate human social behavior. While prior work has demonstrated significant potential across various do
Externí odkaz:
http://arxiv.org/abs/2410.04360
Autor:
Tang, Jiakai, Dai, Sunhao, Sun, Zexu, Chen, Xu, Xu, Jun, Yu, Wenhui, Hu, Lantao, Jiang, Peng, Li, Han
In recent years, graph contrastive learning (GCL) has received increasing attention in recommender systems due to its effectiveness in reducing bias caused by data sparsity. However, most existing GCL models rely on heuristic approaches and usually a
Externí odkaz:
http://arxiv.org/abs/2407.10184
Uplift modeling has shown very promising results in online marketing. However, most existing works are prone to the robustness challenge in some practical applications. In this paper, we first present a possible explanation for the above phenomenon.
Externí odkaz:
http://arxiv.org/abs/2310.04693
Autor:
Wang, Lei, Ma, Chen, Feng, Xueyang, Zhang, Zeyu, Yang, Hao, Zhang, Jingsen, Chen, Zhiyuan, Tang, Jiakai, Chen, Xu, Lin, Yankai, Zhao, Wayne Xin, Wei, Zhewei, Wen, Ji-Rong
Autonomous agents have long been a prominent research focus in both academic and industry communities. Previous research in this field often focuses on training agents with limited knowledge within isolated environments, which diverges significantly
Externí odkaz:
http://arxiv.org/abs/2308.11432
Autor:
Wang, Lei, Zhang, Jingsen, Yang, Hao, Chen, Zhiyuan, Tang, Jiakai, Zhang, Zeyu, Chen, Xu, Lin, Yankai, Song, Ruihua, Zhao, Wayne Xin, Xu, Jun, Dou, Zhicheng, Wang, Jun, Wen, Ji-Rong
Simulating high quality user behavior data has always been a fundamental problem in human-centered applications, where the major difficulty originates from the intricate mechanism of human decision process. Recently, substantial evidences have sugges
Externí odkaz:
http://arxiv.org/abs/2306.02552
Cross-Domain Recommendation (CDR) is an effective way to alleviate the cold-start problem. However, previous work severely ignores fairness and bias when learning the mapping function, which is used to obtain the representations for fresh users in th
Externí odkaz:
http://arxiv.org/abs/2302.00158
Autor:
Zhao, Wayne Xin, Hou, Yupeng, Pan, Xingyu, Yang, Chen, Zhang, Zeyu, Lin, Zihan, Zhang, Jingsen, Bian, Shuqing, Tang, Jiakai, Sun, Wenqi, Chen, Yushuo, Xu, Lanling, Zhang, Gaowei, Tian, Zhen, Tian, Changxin, Mu, Shanlei, Fan, Xinyan, Chen, Xu, Wen, Ji-Rong
In order to support the study of recent advances in recommender systems, this paper presents an extended recommendation library consisting of eight packages for up-to-date topics and architectures. First of all, from a data perspective, we consider t
Externí odkaz:
http://arxiv.org/abs/2206.07351
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Chinese Journal of Geological Hazard & Control; Dec2023, Vol. 34 Issue 6, p20-29, 10p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.