Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Tancrède Lepoint"'
Publikováno v:
Transactions on Cryptographic Hardware and Embedded Systems, Vol 2024, Iss 4 (2024)
for Dilithium, the post-quantum signature scheme recently standardized by NIST. We improve the masked generation of the masking vector y, based on a fast Booleanto- arithmetic conversion modulo q. We also describe an optimized gadget for the high-ord
Externí odkaz:
https://doaj.org/article/86fe6d4106f04abd8f01f1855b32d8b5
Autor:
Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, Damien Stehlé
Publikováno v:
Transactions on Cryptographic Hardware and Embedded Systems, Vol 2018, Iss 1 (2018)
In this paper, we present the lattice-based signature scheme Dilithium, which is a component of the CRYSTALS (Cryptographic Suite for Algebraic Lattices) suite that was submitted to NIST’s call for post-quantum cryptographic standards. The design o
Externí odkaz:
https://doaj.org/article/2731b0926ae84880848203b06530fa0b
Autor:
Panos Kampanakis, Tancrède Lepoint
Publikováno v:
Security Standardisation Research ISBN: 9783031307300
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::544daf48507c649e62c1a40ad167f525
https://doi.org/10.1007/978-3-031-30731-7_4
https://doi.org/10.1007/978-3-031-30731-7_4
Publikováno v:
Journal of Cryptology. 35
Autor:
Gabriela F. Ciocarlie, Michael Emmi, Michael E. Locasto, Tancrède Lepoint, Ulf Lindqvist, Prashant Anantharaman, Bogdan Copos, Ioannis Agadakos, Liwei Song
Publikováno v:
Modeling and Design of Secure Internet of Things
Publikováno v:
Applied Cryptography and Network Security ISBN: 9783031092336
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ba672797c1e06535b858a07f90916abc
https://doi.org/10.1007/978-3-031-09234-3_28
https://doi.org/10.1007/978-3-031-09234-3_28
Publikováno v:
Protecting Privacy through Homomorphic Encryption ISBN: 9783030772864
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::217b7fb48037d09272bbd3d9000f7ee1
https://doi.org/10.1007/978-3-030-77287-1_6
https://doi.org/10.1007/978-3-030-77287-1_6
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030778699
EUROCRYPT (1)
EUROCRYPT (1)
We present an algorithm solving the ROS (Random inhomogeneities in a Overdetermined Solvable system of linear equations) problem mod p in polynomial time for \(\ell > \log p\) dimensions. Our algorithm can be combined with Wagner’s attack, and lead
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::11b79fcea43a3bbe63cf5f3742ae45ab
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
Autor:
Lie He, Sebastian U. Stich, Mariana Raykova, Phillip B. Gibbons, Mehryar Mohri, David Evans, Badih Ghazi, Felix X. Yu, Sen Zhao, Jianyu Wang, Zheng Xu, Weikang Song, Prateek Mittal, Ramesh Raskar, Zachary Garrett, Farinaz Koushanfar, H. Brendan McMahan, Ayfer Ozgur, Mikhail Khodak, Rafael G. L. D'Oliveira, Jakub Konecní, Aurélien Bellet, Arjun Nitin Bhagoji, Hubert Eichner, Han Yu, Adrià Gascón, Ananda Theertha Suresh, Sanmi Koyejo, Praneeth Vepakomma, Josh Gardner, Chaoyang He, Florian Tramèr, Tancrède Lepoint, Salim El Rouayheb, Peter Kairouz, Li Xiong, Kallista Bonawitz, Rasmus Pagh, Tara Javidi, Mehdi Bennis, Dawn Song, Martin Jaggi, Zhouyuan Huo, Hang Qi, Gauri Joshi, Qiang Yang, Richard Nock, Yang Liu, Brendan Avent, Justin Hsu, Rachel Cummings, Graham Cormode, Marco Gruteser, Aleksandra Korolova, Ziteng Sun, Zaid Harchaoui, Ben Hutchinson, Zachary Charles, Daniel Ramage
Publikováno v:
Foundations and Trends in Machine Learning
Foundations and Trends in Machine Learning, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, Now Publishers, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, 2021, 14 (1-2), pp.1-210
Foundations and Trends in Machine Learning, Now Publishers, 2021, 14 (1-2), pp.1-210
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b1ccc10027ba1ce68ce0210510e8bdc
https://inria.hal.science/hal-02406503v2/document
https://inria.hal.science/hal-02406503v2/document
Publikováno v:
CCS
Secure aggregation is a cryptographic primitive that enables a server to learn the sum of the vector inputs of many clients. Bonawitz et al. (CCS 2017) presented a construction that incurs computation and communication for each client linear in the n