Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Tanase, Raluca"'
We prove that the characterization of the critical locus for complex H\'enon maps that are small perturbations of quadratic polynomials with disconnected Julia sets given by Firsova holds in a much larger HOV-like region from the complex horseshoe lo
Externí odkaz:
http://arxiv.org/abs/2211.12430
In this paper we study the dynamics of germs of holomorphic diffeomorphisms of $(\mathbb{C}^{n},0)$ with a fixed point at the origin with exactly one neutral eigenvalue. We prove that the map on any local center manifold of $0$ is quasiconformally co
Externí odkaz:
http://arxiv.org/abs/1611.09840
We prove the existence of hedgehogs for germs of complex analytic diffeomorphisms of $(\mathbb{C}^{2},0)$ with a semi-neutral fixed point at the origin, using topological techniques. This approach also provides an alternative proof of a theorem of P\
Externí odkaz:
http://arxiv.org/abs/1611.09342
Autor:
Radu, Remus, Tanase, Raluca
We give a new proof of a theorem of Hubbard-Oberste-Vorth [HOV2] for H\'enon maps that are perturbations of a hyperbolic polynomial and recover the Julia set $J^{+}$ inside a polydisk as the image of the fixed point of a contracting operator. We also
Externí odkaz:
http://arxiv.org/abs/1511.03256
Autor:
Radu, Remus, Tanase, Raluca
We prove some new continuity results for the Julia sets $J$ and $J^{+}$ of the complex H\'enon map $H_{c,a}(x,y)=(x^{2}+c+ay, ax)$, where $a$ and $c$ are complex parameters. We look at the parameter space of dissipative H\'enon maps which have a fixe
Externí odkaz:
http://arxiv.org/abs/1508.03625
Autor:
Tanase, Raluca
Consider the standard family of complex H\'enon maps $H(x,y) = (p(x) - ay, x)$, where $p$ is a quadratic polynomial and $a$ is a complex parameter. Let $U^{+}$ be the set of points that escape to infinity under forward iterations. The analytic struct
Externí odkaz:
http://arxiv.org/abs/1503.03665
Autor:
Radu, Remus, Tanase, Raluca
Consider the parameter space $\mathcal{P}_{\lambda}\subset \mathbb{C}^{2}$ of complex H\'enon maps $$ H_{c,a}(x,y)=(x^{2}+c+ay,ax),\ \ a\neq 0 $$ which have a semi-parabolic fixed point with one eigenvalue $\lambda=e^{2\pi i p/q}$. We give a characte
Externí odkaz:
http://arxiv.org/abs/1411.3824
Autor:
Radu, Remus, Tanase, Raluca
Publikováno v:
In Advances in Mathematics 9 July 2019 350:1000-1058
Autor:
Tanase, Raluca
Publikováno v:
In Advances in Mathematics 4 June 2016 295:53-89
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.