Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Tanabe, Naomi"'
Given a multiplicative function $f$, we let $S(x,f)=\sum_{n\leq x}f(n)$ be the associated partial sum. In this note, we show that lower bounds on partial sums of divisor-bounded functions result in lower bounds on the partial sums associated to their
Externí odkaz:
http://arxiv.org/abs/2405.00658
This paper presents a new approach to evaluating the special values of the Dirichlet beta function, $\beta(2k+1)$, where $k$ is any nonnegative integer. Our approach relies on some properties of the Euler numbers and polynomials, and uses basic calcu
Externí odkaz:
http://arxiv.org/abs/2309.13134
Let $N$ be a fixed positive integer, and let $f\in S_k(N)$ be a primitive cusp form given by the Fourier expansion $f(z)=\sum_{n=1}^{\infty} \lambda_f(n)n^{\frac{k-1}{2}}e(nz)$. We consider the partial sum $S(x,f)=\sum_{n\leq x}\lambda_f(x)$. It is c
Externí odkaz:
http://arxiv.org/abs/2308.06311
Autor:
Hamieh, Alia, Tanabe, Naomi
In this paper, we study the non-vanishing of the central values of the Rankin-Selberg $L$-function of two ad\`elic Hilbert primitive forms ${\bf f}$ and ${\bf g}$, both of which have varying weight parameter $k$. We prove that, for sufficiently large
Externí odkaz:
http://arxiv.org/abs/1806.04749
Publikováno v:
Res. number theory 4, 13 (2018)
We prove an equidistribution of signs for the Fourier coefficients of Hilbert modular forms of half-integral weight. Our study focuses on certain subfamilies of coefficients that are accessible via the Shimura correspondence. This is a generalization
Externí odkaz:
http://arxiv.org/abs/1708.05503
Autor:
Hamieh, Alia, Tanabe, Naomi
The purpose of this paper is to prove that a primitive Hilbert cusp form $\mathbf{g}$ is uniquely determined by the central values of the Rankin-Selberg $L$-functions $L(\mathbf{f}\otimes\mathbf{g}, \frac{1}{2})$, where $\mathbf{f}$ runs through all
Externí odkaz:
http://arxiv.org/abs/1609.07211
Determining Hilbert Modular Forms by Central Values of Rankin-Selberg Convolutions: The Level Aspect
Autor:
Hamieh, Alia, Tanabe, Naomi
In this paper, we prove that a primitive Hilbert cusp form $\mathbf{g}$ is uniquely determined by the central values of the Rankin-Selberg $L$-functions $L(\mathbf{f}\otimes\mathbf{g}, \frac{1}{2})$, where $\mathbf{f}$ runs through all primitive Hilb
Externí odkaz:
http://arxiv.org/abs/1609.07209
Autor:
Raghuram, A., Tanabe, Naomi
The purpose of this semi-expository article is to give another proof of a classical theorem of Shimura on the critical values of the standard L-function attached to a Hilbert modular form. Our proof is along the lines of previous work of Harder and H
Externí odkaz:
http://arxiv.org/abs/1102.1864
Autor:
HAMIEH, ALIA, TANABE, NAOMI
Publikováno v:
Transactions of the American Mathematical Society, 2017 Dec 01. 369(12), 8781-8797.
Externí odkaz:
https://www.jstor.org/stable/90014270
Autor:
Murty, M. Ram, Tanabe, Naomi
Publikováno v:
In Journal of Number Theory April 2016 161:444-456