Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Taman Upadhaya"'
Autor:
Shima Sepehri, Olena Tankyevych, Taman Upadhaya, Dimitris Visvikis, Mathieu Hatt, Catherine Cheze Le Rest
Publikováno v:
Diagnostics, Vol 11, Iss 4, p 675 (2021)
Machine learning (ML) algorithms for selecting and combining radiomic features into multiparametric prediction models have become popular; however, it has been shown that large variations in performance can be obtained by relying on different approac
Externí odkaz:
https://doaj.org/article/f12b98538aa3468cb4045eb08e19e0e6
Publikováno v:
Cancer Research. 81:PS4-43
OBJECTIVE It remains a challenge to predict individual risk for recurrence after primary treatment of ductal carcinoma in situ (DCIS). While DCIS is contained within the duct, prior studies have pointed to the importance of stromal collagen in cancer
Autor:
Timothy D. Solberg, Martin Vallières, Jorge Barrios Ginart, Alex Zwanenburg, Avishek Chatterjee, Olivier Morin, Henry C. Woodruff, Jan Seuntjens, Gilmer Valdes, Steve Braunstein, Taman Upadhaya, Javier Villanueva-Meyer, Catherine C. Park, Sue S. Yom, Steffen Löck, William S. Chen, Philippe Lambin, Julian C. Hong
Publikováno v:
Nature Cancer, 2(7), 709-722. Nature Publishing Group
Despite widespread adoption of electronic health records (EHRs), most hospitals are not ready to implement data science research in the clinical pipelines. Here, we develop MEDomics, a continuously learning infrastructure through which multimodal hea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6fc5c7a10964290aa604fb59b0b20f7d
https://cris.maastrichtuniversity.nl/en/publications/bb49d7d3-56fd-4ce0-9326-940d3ab70691
https://cris.maastrichtuniversity.nl/en/publications/bb49d7d3-56fd-4ce0-9326-940d3ab70691
Autor:
Taman Upadhaya, Mary-Kate Hayward, Mi-Ok Kim, Ronald Balassanian, Valerie Weaver, Olivier Morin, Catherine Park
Publikováno v:
Cancer Research. 82:P1-02
OBJECTIVE. A clinical challenge of ductal carcinoma in situ (DCIS) is to accurately predict individual risk for recurrence. Prior studies have highlighted the importance of stromal collagen surrounding breast ducts in breast cancer aggression. We stu
Autor:
Taman Upadhaya, Martin Vallières, Avishek Chatterjee, François Lucia, Augustin Mervoyer, Pietro Andrea Bonaffini, Catherine Cheze Le Rest, Ingrid Masson, Jan Seuntjens, Ulrike Schick, Caroline Reinhold, Dimitris Visvikis, Mathieu Hatt
Publikováno v:
IEEE Transactions on Radiation and Plasma Medical Sciences. 3:192-200
Machine learning techniques are becoming increasingly popular in radiomics studies. They can handle high dimensional sets of radiomics features with higher robustness than usual statistical analyses, by capturing complex interactions between features
Autor:
Taman Upadhaya, Dimitris Visvikis, Catherine Cheze Le Rest, Mathieu Hatt, Olena Tankyevych, Shima Sepehri
Publikováno v:
Diagnostics
Volume 11
Issue 4
Diagnostics, Vol 11, Iss 675, p 675 (2021)
Volume 11
Issue 4
Diagnostics, Vol 11, Iss 675, p 675 (2021)
Machine learning (ML) algorithms for selecting and combining radiomic features into multiparametric prediction models have become popular
however, it has been shown that large variations in performance can be obtained by relying on different app
however, it has been shown that large variations in performance can be obtained by relying on different app
Autor:
Olivier, Morin, Martin, Vallières, Steve, Braunstein, Jorge Barrios, Ginart, Taman, Upadhaya, Henry C, Woodruff, Alex, Zwanenburg, Avishek, Chatterjee, Javier E, Villanueva-Meyer, Gilmer, Valdes, William, Chen, Julian C, Hong, Sue S, Yom, Timothy D, Solberg, Steffen, Löck, Jan, Seuntjens, Catherine, Park, Philippe, Lambin
Publikováno v:
Nature cancer. 2(7)
Despite widespread adoption of electronic health records (EHRs), most hospitals are not ready to implement data science research in the clinical pipelines. Here, we develop MEDomics, a continuously learning infrastructure through which multimodal hea
Autor:
Christelle Gallais, R. Perdrisot, Catherine Cheze Le Rest, Florent Tixier, Taman Upadhaya, Thomas Pinto-Leite
Publikováno v:
Nuclear medicine communications. 41(2)
Background Recurrence occurs in more than 50% of prostate cancer. To be effective, treatments require precise localization of tumor cells. [F]fluoromethylcholine ([18F]FCH) PET/computed tomography (CT) is currently used to restage disease in cases of
Autor:
Heiko Schöder, Remy Klaassen, Scott V. Bratman, Joseph O. Deasy, Philippe Lambin, Arthur Jochems, Henry C. Woodruff, Ralph T.H. Leijenaar, Jung Hun Oh, Brian O'Sullivan, John L. Humm, Sebastian Sanduleanu, Hanneke W. M. van Laarhoven, Mathieu Hatt, Frank J. P. Hoebers, Aditya Apte, Ludwig Dubois, Frank J. W. M. Dankers, X. Geets, Dirk De Ruysscher, Shao Hui Huang, Nancy Y. Lee, Dario Di Perri, Mireia Crispin-Ortuzar, Taman Upadhaya, Aniek J.G. Even, Rathan M. Subramiam, Olga Hamming-Vrieze, Razvan L. Miclea, Hans Kaanders
Publikováno v:
Radiotherapy and Oncology, 153, 97-105
Radiotherapy and oncology, Vol. 153, p. 97-105 (2020)
Radiotherapy and Oncology, 153, pp. 97-105
Radiotherapy and Oncology, 153, 97-105. Elsevier Ireland Ltd
Radiotherapy & Oncology
Radiotherapy and oncology, 153, 97-105. Elsevier Ireland Ltd
Radiotherapy and oncology, Vol. 153, p. 97-105 (2020)
Radiotherapy and Oncology, 153, pp. 97-105
Radiotherapy and Oncology, 153, 97-105. Elsevier Ireland Ltd
Radiotherapy & Oncology
Radiotherapy and oncology, 153, 97-105. Elsevier Ireland Ltd
Background: Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature.Material and methods: A to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb69ed25bbd168a5d27594b83ee9a131
http://hdl.handle.net/2066/228714
http://hdl.handle.net/2066/228714
Autor:
Olivier Morin, Mahmoud A. Abdalah, Steffen Löck, Sandy Napel, Lisanne V. van Dijk, Arvind Rao, Muhammad Siddique, Jacopo Lenkowicz, Ronald Boellaard, Issam El Naqa, Jairo Socarras Fernandez, Marta Bogowicz, Spyridon Bakas, Jonas Scherer, Are Losnegård, Marie-Charlotte Desseroit, Robert J. Gillies, Gary Cook, Martin Vallières, Vincenzo Valentini, Alex Zwanenburg, Philip Whybra, Sarthak Pati, Sebastian Echegaray, Matthias Guckenberger, Christos Davatzikos, Emiliano Spezi, Roberto Gatta, Nicola Dinapoli, Daniela Thorwarth, Luca Boldrini, Roel J H M Steenbakkers, Esther G.C. Troost, Joost J. M. van Griethuysen, Irène Buvat, Sung Min Ha, Fiona Lippert, Hugo J.W.L. Aerts, Klaus H. Maier-Hein, Fanny Orlhac, Cuong V. Dinh, Stefan Leger, Philippe Lambin, Ralph T.H. Leijenaar, Fabian Isensee, Mathieu Hatt, Vicky Goh, Christian Richter, Roelof J. Beukinga, Henning Müller, Elisabeth Pfaehler, Nanna M. Sijtsema, Floris H. P. van Velden, Aditya Apte, Michael Götz, Arman Rahmim, Vincent Andrearczyk, Stephanie Tanadini-Lang, Adrien Depeursinge, Christophe Nioche, Andriy Fedorov, Saeed Ashrafinia, Taman Upadhaya
Publikováno v:
Radiology 295(2020)2, 328-338
Radiology
Radiology, Radiological Society of North America, 2020, 295 (2), pp.328-338. ⟨10.1148/radiol.2020191145⟩
Radiology, 295(2), 328-338. RADIOLOGICAL SOC NORTH AMERICA
Zwanenburg, A, Vallières, M, Abdalah, M A, Aerts, H J W L, Andrearczyk, V, Apte, A, Ashrafinia, S, Bakas, S, Beukinga, R J, Boellaard, R, Bogowicz, M, Boldrini, L, Buvat, I, Cook, G J R, Davatzikos, C, Depeursinge, A, Desseroit, M C, Dinapoli, N, Dinh, C V & Echegaray, S 2020, ' The image biomarker standardization initiative : Standardized quantitative radiomics for high-throughput image-based phenotyping ', Radiology, vol. 295, no. 2, pp. 328-338 . https://doi.org/10.1148/radiol.2020191145
Radiology, vol 295, iss 2
Radiology, 295(2), 328-338. Radiological Society of North America, Inc.
Radiology, 2020, 295 (2), pp.328-338. ⟨10.1148/radiol.2020191145⟩
Radiology, 295(2), 328-338. Radiological Society of North America Inc.
Radiology
Radiology, Radiological Society of North America, 2020, 295 (2), pp.328-338. ⟨10.1148/radiol.2020191145⟩
Radiology, 295(2), 328-338. RADIOLOGICAL SOC NORTH AMERICA
Zwanenburg, A, Vallières, M, Abdalah, M A, Aerts, H J W L, Andrearczyk, V, Apte, A, Ashrafinia, S, Bakas, S, Beukinga, R J, Boellaard, R, Bogowicz, M, Boldrini, L, Buvat, I, Cook, G J R, Davatzikos, C, Depeursinge, A, Desseroit, M C, Dinapoli, N, Dinh, C V & Echegaray, S 2020, ' The image biomarker standardization initiative : Standardized quantitative radiomics for high-throughput image-based phenotyping ', Radiology, vol. 295, no. 2, pp. 328-338 . https://doi.org/10.1148/radiol.2020191145
Radiology, vol 295, iss 2
Radiology, 295(2), 328-338. Radiological Society of North America, Inc.
Radiology, 2020, 295 (2), pp.328-338. ⟨10.1148/radiol.2020191145⟩
Radiology, 295(2), 328-338. Radiological Society of North America Inc.
International audience; Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a07c005740a02571d8d74ebfc9433efe
https://www.hzdr.de/publications/Publ-30321-1
https://www.hzdr.de/publications/Publ-30321-1