Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Tamás Darvas"'
Autor:
Tamás Darvas
Publikováno v:
Journal of the European Mathematical Society. 23:4091-4108
Autor:
Tamás Darvas
Publikováno v:
Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio iuridica. 60:145-158
Publikováno v:
Mathematische Annalen. 379:95-132
Let $$(X,\omega )$$ be a compact Kahler manifold. We prove the existence and uniqueness of solutions to complex Monge–Ampere equations with prescribed singularity type. Compared to previous work, the assumption of small unbounded locus is dropped,
Publikováno v:
Communications on Pure and Applied Mathematics. 73:1100-1138
The space of K\"ahler metrics can, on the one hand, be approximated by subspaces of algebraic metrics, while, on the other hand, can be enlarged to finite-energy spaces arising in pluripotential theory. The latter spaces are realized as metric comple
Autor:
Tamás Darvas
Publikováno v:
Advances in Complex Geometry. :1-104
Autor:
Tamás Darvas, Yanir A. Rubinstein
Publikováno v:
Anal. PDE 12, no. 3 (2019), 721-735
The Ricci iteration is a discrete analogue of the Ricci flow. According to Perelman, the Ricci flow converges to a Kähler–Einstein metric whenever one exists, and it has been conjectured that the Ricci iteration should behave similarly. This artic
Publikováno v:
Journal für die reine und angewandte Mathematik
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2021, ⟨10.1515/crelle-2020-0019⟩
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2021, ⟨10.1515/crelle-2020-0019⟩
Let X be a compact Kähler manifold. Given a big cohomology class { θ } {\{\theta\}} , there is a natural equivalence relation on the space of θ-psh functions giving rise to 𝒮 ( X , θ ) {\mathcal{S}(X,\theta)} , the space of singularity typ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fdd13c692db271b14ad85771e13ce7d3
https://hal.archives-ouvertes.fr/hal-02289227/file/Darvas&DiNezza&Lu-Crelle-2021.pdf
https://hal.archives-ouvertes.fr/hal-02289227/file/Darvas&DiNezza&Lu-Crelle-2021.pdf
We obtain sharp inequalities between the large scale asymptotic of the $J$ functional with respect to the $d_1$ metric on the space of Kahler metrics. Applications regarding the initial value problem for geodesic rays are presented.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65cbcea32684e25039f4a2c1ad545a67
Autor:
Tamás Darvas, Chinh H. Lu
Publikováno v:
Geom. Topol. 24, no. 4 (2020), 1907-1967
Geometry and Topology
Geometry and Topology, Mathematical Sciences Publishers, 2020, ⟨10.2140/gt.2020.24.1907⟩
Geometry and Topology
Geometry and Topology, Mathematical Sciences Publishers, 2020, ⟨10.2140/gt.2020.24.1907⟩
We establish the essentially optimal form of Donaldson's geodesic stability conjecture regarding existence of constant scalar curvature K\"ahler metrics. We carry this out by exploring in detail the metric geometry of Mabuchi geodesic rays, and the u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ff00b1989110834e9e21b5686853d0a
https://projecteuclid.org/euclid.gt/1605582062
https://projecteuclid.org/euclid.gt/1605582062
Publikováno v:
Geom. Topol. 21, no. 5 (2017), 2945-2988
Let $(X,\omega)$ be a compact connected K\"ahler manifold and denote by $(\mathcal E^p,d_p)$ the metric completion of the space of K\"ahler potentials $\mathcal H_\omega$ with respect to the $L^p$-type path length metric $d_p$. First, we show that th