Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Takiko Sasaki"'
Publikováno v:
AIMS Mathematics; 2023, Vol. 8 Issue 11, p25477-25486, 10p
Autor:
Takiko Sasaki
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 14:1133-1143
We consider a blow-up phenomenon for \begin{document}$ { \partial_t^2 u_ \varepsilon} $\end{document} \begin{document}$ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $\end{document} \begin{document}$ { = F(\partial_t u_ \varepsilon)}. $\end{document}
Autor:
Tetsuya Ishiwata, Takiko Sasaki
Publikováno v:
Japan Journal of Industrial and Applied Mathematics. 37:339-363
In this paper, we consider the blow-up curve of semilinear wave equations. Merle and Zaag (Am J Math 134:581–648, 2012) considered the blow-up curve for $$\partial _t^2 u- \partial _x^2 u = |u|^{p-1}u$$ and showed that there is the case that the bl
Autor:
Takiko Sasaki, Tetsuya Ishiwata
Publikováno v:
The Role of Metrics in the Theory of Partial Differential Equations, Y. Giga, N. Hamamuki, H. Kubo, H. Kuroda and T. Ozawa, eds. (Tokyo: Mathematical Society of Japan, 2020)
We consider a blow-up curve for the one dimensional wave equation. Merle–Zaag [5] showed that there is a possibility that the blow-up curve for $\partial_t^2 u - \partial_x^2 u = |u|^{p-1}u$ is not differentiable if the sign of the solution changes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6cf22f4e7e4c47e91a414a6588a3411
https://projecteuclid.org/euclid.aspm/1609261567
https://projecteuclid.org/euclid.aspm/1609261567
Autor:
Takiko Sasaki, Masahito Ohta
Publikováno v:
Applications of Mathematics. 62:405-432
We consider a Strang-type splitting method for an abstract semilinear evolution equation $${\partial _t}u = Au + F\left( u \right).$$ Roughly speaking, the splitting method is a time-discretization approximation based on the decomposition of the oper
Autor:
Takiko Sasaki, Norikazu Saito
Publikováno v:
Japan Journal of Industrial and Applied Mathematics. 33:427-470
This paper presents a coherent analysis of the finite difference method to nonlinear Schrodinger (NLS) equations in one spatial dimension. We use the discrete $$H^1$$ framework to establish well-posedness and error estimates in the $$L^\infty $$ norm
Autor:
Makoto Mizuguchi, Kaname Matsue, Takiko Sasaki, Akitoshi Takayasu, Kazuaki Tanaka, Shin'ichi Oishi
This paper focuses on blow-up solutions of ordinary differential equations (ODEs). We present a method for validating blow-up solutions and their blow-up times, which is based on compactifications and the Lyapunov function validation method. The nece
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66b281517e1106f50b6d66bbf179b7b0
Autor:
Takiko Sasaki
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 90, no. 1 (2014), 15-20
We study a linear semidiscrete-in-time finite difference method for the system of nonlinear Schrodinger equations that is a model of the interaction of non-relativistic particles with different masses. The main aim is to show that the scheme is secon
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a7cbce67152d8aba19f8306ebc4cba2b
http://projecteuclid.org/euclid.pja/1389017410
http://projecteuclid.org/euclid.pja/1389017410