Zobrazeno 1 - 10
of 148
pro vyhledávání: '"Takayoshi Ogawa"'
Publikováno v:
Asymptotic Analysis. 130:261-295
We study the nonlinear Neumann boundary value problem for semilinear heat equation ∂ t u − Δ u = λ | u | p , t > 0 , x ∈ R + n , u ( 0 , x ) = ε u 0 ( x ) , x ∈ R + n , − ∂ x u ( t , x ′ , 0 ) = γ | u | q ( t , x ′ , 0 ) , t > 0 ,
Publikováno v:
Journal of Differential Equations. 328:1-64
Mathematical modeling and dissipative structure for systems of magnetohydrodynamics with Hall effect
Publikováno v:
Mathematical Models and Methods in Applied Sciences. 32:1807-1878
This paper is concerned with the mathematical modeling of electro-magneto-hydrodynamics and magnetohydrodynamics by taking account of the Hall effect. We discuss conservation laws, strict convexity of the negative entropy as a function of conserved q
Autor:
Takeshi Suguro, Takayoshi Ogawa
Publikováno v:
Journal of Differential Equations. 307:114-136
We consider asymptotic behavior of a solution to the drift-diffusion equation for a fast-diffusion case. In the degenerate drift-diffusion equation, it is known that large time behavior of solutions converges to the Zel'dovich–Kompaneetz–Barenbla
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
We show the finite time blow up of a solution to the Cauchy problem of a drift-diffusion equation of a parabolic-elliptic type in higher space dimensions. If the initial data satisfies a certain condition involving the entropy functional, then the co
Autor:
Takayoshi Ogawa, Tsukasa Iwabuchi
Publikováno v:
Journal of Elliptic and Parabolic Equations. 7:571-587
We study the ill-posedness issue for the compressible viscous heat-conductive flows in two dimensions. In the scaling invariant spaces, negative regularity of the temperature causes an essential problem for the well-posedness, and the ill-posedness i
Autor:
Takayoshi Ogawa, Senjo Shimizu
Publikováno v:
Journal of Elliptic and Parabolic Equations. 7:509-535
Autor:
Takayoshi Ogawa, Takeshi Suguro
Publikováno v:
Mathematische Annalen.
We consider the singular limit problem for the Cauchy problem of the (Patlak–) Keller–Segel system of parabolic-parabolic type. The problem is considered in the uniformly local Lebesgue spaces and the singular limit problem as the relaxation para
Global well-posedness for the Sobolev critical nonlinear Schrödinger system in four space dimensions
Autor:
Takayoshi Ogawa, Shun Tsuhara
Publikováno v:
Journal of Mathematical Analysis and Applications. 524:127052
Publikováno v:
Nonlinear Analysis. 230:113229