Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Takamune Asamoto"'
Autor:
Yoichi Sato, Yasuhiko Takegami, Takamune Asamoto, Yutaro Ono, Tsugeno Hidetoshi, Ryosuke Goto, Akira Kitamura, Seiwa Honda
Publikováno v:
BMC Musculoskeletal Disorders, Vol 22, Iss 1, Pp 1-10 (2021)
Abstract Background Less experienced clinicians sometimes make misdiagnosis of hip fractures. We developed computer-aided diagnosis (CAD) system for hip fractures on plain X-rays using a deep learning model trained on a large dataset. In this study,
Externí odkaz:
https://doaj.org/article/555973dab4a441fd81833892fc9cf363
Deep Learning for Bone Mineral Density and T-Score Prediction from Chest X-rays: A Multicenter Study
Autor:
Yoichi Sato, Norio Yamamoto, Naoya Inagaki, Yusuke Iesaki, Takamune Asamoto, Tomohiro Suzuki, Shunsuke Takahara
Publikováno v:
Biomedicines, Vol 10, Iss 9, p 2323 (2022)
Although the number of patients with osteoporosis is increasing worldwide, diagnosis and treatment are presently inadequate. In this study, we developed a deep learning model to predict bone mineral density (BMD) and T-score from chest X-rays, which
Externí odkaz:
https://doaj.org/article/6f5859fbaa5742e59913b63f56325f96
Publikováno v:
Orthopaedics & Traumatology: Surgery & Research. 108:103327
The Geriatric Nutritional Risk Index (GNRI) is an objective nutritional status assessment tool used for predicting mortality risk in hospitalized patients. However, it is unclear whether GNRI reflects short-term mortality for hip fracture patients af
Publikováno v:
Revue de Chirurgie Orthopédique et Traumatologique. 108:573
Autor:
Takamune Asamoto, Seiwa Honda, Tsugeno Hidetoshi, Yasuhiko Takegami, Yutaro Ono, Yoichi Sato, Akira Kitamura, Ryosuke Goto
Publikováno v:
BMC Musculoskeletal Disorders
BMC Musculoskeletal Disorders, Vol 22, Iss 1, Pp 1-10 (2021)
BMC Musculoskeletal Disorders, Vol 22, Iss 1, Pp 1-10 (2021)
Background Less experienced clinicians sometimes make misdiagnosis of hip fractures. We developed computer-aided diagnosis (CAD) system for hip fractures on plain X-rays using a deep learning model trained on a large dataset. In this study, we examin
Autor:
Sato, Yoichi, Takegami, Yasuhiko, Takamune Asamoto, Yutaro Ono, Tsugeno Hidetoshi, Goto, Ryosuke, Kitamura, Akira, Seiwa Honda
Additional file 1 : Supplemental methods. Supplemental Figure 1. Image preprocessing. Supplemental Figure 2. Configuration diagram of the EfficientNet-B4 model. Supplemental Figure 3. The machine learning process. Supplemental Figure 4. The diagnosti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::413e17c7a197c2f7c0e5a4a163e252ea