Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Takahisa Inui"'
Publikováno v:
Nonlinearity. 35:C17-C19
Publikováno v:
Funkcialaj Ekvacioj. 64:261-291
Autor:
Takahisa Inui, Yuta Wakasugi
Publikováno v:
Journal of Evolution Equations. 21:5171-5201
For the energy-critical nonlinear damped wave equation, we show the unconditional well-posedness. The unconditional well-posedness means local well-posedness and the unconditional uniqueness. First, we give the local well-posedness and stability, who
Publikováno v:
Mathematische Annalen.
We study traveling wave solutions for a nonlinear Schr\"odinger system with quadratic interaction. For the non mass resonance case, the system has no Galilean symmetry, which is of particular interest in this paper. We construct traveling wave soluti
Autor:
Stephen Gustafson, Takahisa Inui
Publikováno v:
Partial Differential Equations and Applications. 3
Autor:
Haruya Mizutani, Takahisa Inui
Publikováno v:
Proceedings of the American Mathematical Society. 149:3473-3484
In the present paper, we consider the linear wave equation with the scale-invariant damping and mass. It is known that the global behavior of the solution depends on the size of the coefficients in front of the damping and mass at initial time t = 0
Publikováno v:
Journal of Hyperbolic Differential Equations. 17:295-354
We consider the asymptotic behavior of solutions to the Cauchy problem for the defocusing nonlinear Klein-Gordon equation (NLKG) with exponential nonlinearity in the one spatial dimension with data in the energy space $H^1(\mathbb{R}) \times L^2(\mat
Autor:
Stephen Gustafson, Takahisa Inui
We consider the nonlinear Schrödinger equation with $L^{2}$-supercritical and $H^{1}$-subcritical power type nonlinearity. Duyckaerts and Roudenko and Campos, Farah, and Roudenko studied the global dynamics of the solutions with same mass and energy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18909dd28e30161f764b135eaf0539a5
Autor:
Alex H. Ardila, Takahisa Inui
We establish the scattering of solutions to the focusing mass supercritical nonlinear Schr\"odinger equation with a repulsive Dirac delta potential \[ i\partial_{t}u+\partial^{2}_{x}u+\gamma\delta(x)u+|u|^{p-1}u=0, \quad (t,x)\in {\mathbb R}\times{\m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed58610cf358ad7bcbc4d4be973c328e
http://arxiv.org/abs/2108.00248
http://arxiv.org/abs/2108.00248
Publikováno v:
Communications on Pure & Applied Analysis. 18:1967-2008
We study the Cauchy problem of the damped wave equation \begin{align*} \partial_{t}^2 u - \Delta u + \partial_t u = 0 \end{align*} and give sharp $L^p$-$L^q$ estimates of the solution for $1\le q \le p < \infty\ (p\neq 1)$ with derivative loss. This