Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Takabi, Daniel"'
Publikováno v:
IEEE Transactions on Dependable and Secure Computing (2024), pp. 1-17
Machine learning models are vulnerable to maliciously crafted Adversarial Examples (AEs). Training a machine learning model with AEs improves its robustness and stability against adversarial attacks. It is essential to develop models that produce hig
Externí odkaz:
http://arxiv.org/abs/2403.11833
Pre-trained language models (PLMs) have consistently demonstrated outstanding performance across a diverse spectrum of natural language processing tasks. Nevertheless, despite their success with unseen data, current PLM-based representations often ex
Externí odkaz:
http://arxiv.org/abs/2403.11082
In today's machine learning landscape, fine-tuning pretrained transformer models has emerged as an essential technique, particularly in scenarios where access to task-aligned training data is limited. However, challenges surface when data sharing enc
Externí odkaz:
http://arxiv.org/abs/2402.09059
Autor:
Balogun, Olusesi, Takabi, Daniel
Insider Threat is a significant and potentially dangerous security issue in corporate settings. It is difficult to mitigate because, unlike external threats, insiders have knowledge of an organization's access policies, access hierarchy, access proto
Externí odkaz:
http://arxiv.org/abs/2305.19477
Autor:
Panzade, Prajwal, Takabi, Daniel
With the advent of functional encryption, new possibilities for computation on encrypted data have arisen. Functional Encryption enables data owners to grant third-party access to perform specified computations without disclosing their inputs. It als
Externí odkaz:
http://arxiv.org/abs/2204.05136
Outsourced computation for neural networks allows users access to state of the art models without needing to invest in specialized hardware and know-how. The problem is that the users lose control over potentially privacy sensitive data. With homomor
Externí odkaz:
http://arxiv.org/abs/2112.12855
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Machine Learning as a Service (MLaaS) has become a growing trend in recent years and several such services are currently offered. MLaaS is essentially a set of services that provides machine learning tools and capabilities as part of cloud computing
Externí odkaz:
http://arxiv.org/abs/1911.11377
Publikováno v:
Journal of Medical Systems; 11/22/2024, Vol. 48 Issue 1, p1-21, 21p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.