Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Taimanov, Iskander A."'
Autor:
Taimanov, Iskander A.
Publikováno v:
Filomat 37:25 (2023), 8709-8718
In sections 1 and 2 we follow our online talk at the 21st Geometrical Seminar (Beograd, Serbia) on June 30, 2022 by giving a survey of the formality problem for manifold with special holonomy and exposing recent results by M. Amann and the author on
Externí odkaz:
http://arxiv.org/abs/2308.03736
Autor:
Taimanov, Iskander A.
Publikováno v:
Proc. Int. Cong. Math. 2022, Vol.4, 2638-2654, EMS Press, Berlin, 2023
This article surveys the Weierstrass representation of surfaces in the three- and four-dimensional spaces, with an emphasis on its relation to the Willmore functional. We also describe an application of this representation to constructing a new type
Externí odkaz:
http://arxiv.org/abs/2207.07856
Publikováno v:
Regular and Chaotic Dynamics, 2022, vol. 27, no. 4, pp. 460-476
We compute the trace formula for the magnetic Laplacian on a compact hyperbolic surface of constant curvature with constant magnetic field for energies above the Mane critical level of the corresponding magnetic geodesic flow. We discuss the asymptot
Externí odkaz:
http://arxiv.org/abs/2202.06055
Autor:
Taimanov, Iskander A.
Publikováno v:
Math. Notes 110:5 (2021), 754-766
The Moutard transform is constructed for the solutions of the Davey-Stewartson II equation. It is geometrically interpreted using the spinor (Weierstrass) representation of surfaces in four-dimensional Euclidean space. Using the Moutard transformatio
Externí odkaz:
http://arxiv.org/abs/2111.07251
Autor:
Amann, Manuel, Taimanov, Iskander A.
Publikováno v:
Moscow Math. J. 24:4 (2024), 495-512
It is a prominent conjecture (relating Riemannian geometry and algebraic topology) that all simply-connected compact manifolds of special holonomy should be formal spaces, i.e., their rational homotopy type should be derivable from their rational coh
Externí odkaz:
http://arxiv.org/abs/2012.10915
Publikováno v:
Math. Zeit. 302 (2022), 629-640
For compact manifolds with infinite fundamental group we present sufficient topological or metric conditions ensuring the existence of two geometrically distinct closed geodesics. We also show how results about generic Riemannian metrics can be carri
Externí odkaz:
http://arxiv.org/abs/2011.01909
Publikováno v:
Russian Math. Surveys 75:6 (2020), 1067-1088
A quasiclassical approximation is constructed to describe the eigenvalues of the magnetic Laplacian on a compact Riemannian manifold in the case when the magnetic field is not given by an exact 2-form. For this, the multidimensional WKB method in the
Externí odkaz:
http://arxiv.org/abs/1912.12444
Publikováno v:
Russian Math. Surveys 74:2 (2019), 325-361
The Guillemin-Uribe trace formula is a semiclassical version of the Selberg trace formula and more general Duistermaat-Guillemin formula for elliptic operators on compact manifolds, which reflects the dynamics of magnetic geodesic flows in terms of e
Externí odkaz:
http://arxiv.org/abs/1901.05699
Publikováno v:
J. Diff. Geometry 120:3 (2022), 557-573
We study the asymptotics of the number N(t) of geometrically distinct closed geodesics of a Riemannian or Finsler metric on a connected sum of two compact manifolds of dimension at least three with non-trivial fundamental groups and apply this result
Externí odkaz:
http://arxiv.org/abs/1809.04588
Autor:
Taimanov, Iskander A.1,2 (AUTHOR) taimanov@math.nsc.ru
Publikováno v:
Acta Mathematica Sinica. Jan2024, Vol. 40 Issue 1, p406-416. 11p.