Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Tae Jun HAM"'
Autor:
Deok-Jae Oh, Yaebin Moon, Do Kyu Ham, Tae Jun Ham, Yongjun Park, Jae W. Lee, Jung Ho Ahn, Eojin Lee
Publikováno v:
ACM Transactions on Embedded Computing Systems. 22:1-28
Hardware performance monitoring units (PMUs) are a standard feature in modern microprocessors, providing a rich set of microarchitectural event samplers. Recently, numerous profile-guided optimization (PGO) frameworks have exploited them to feature m
Publikováno v:
IEICE Transactions on Information and Systems. :427-431
Publikováno v:
IEEE Transactions on Computers. :1-13
Autor:
DEOK-JAE OH, YAEBIN MOON, DO KYU HAM, TAE JUN HAM, YONGJUN PARK, LEE, JAE W., JUNG HO AHN, EOJIN LEE
Publikováno v:
ACM Transactions on Embedded Computing Systems; Jan2023, Vol. 22 Issue 1, p1-28, 28p
Autor:
Krste Asanovic, Tae Jun Ham, Brendan Sweeney, Seong Hoon Seo, Jae W. Lee, David Bruns-Smith, U Gyeong Song, Yejin Lee, Young H. Oh, Lisa Wu Wills
Publikováno v:
IEEE Micro. 41:42-49
This article presents a framework, Genesis (genome analysis), to efficiently and flexibly accelerate generic data manipulation operations that have become performance bottlenecks in the genomic data processing pipeline utilizing FPGAs-as-a-service. G
Autor:
Michael Jaemin Kim, Jaehyun Park, Yeonhong Park, Wanju Doh, Namhoon Kim, Tae Jun Ham, Jae W. Lee, Jung Ho Ahn
Publikováno v:
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA).
Since its public introduction in the mid-2010s, the Row Hammer (RH) phenomenon has drawn significant attention from the research community due to its security implications. Although many RH-protection schemes have been proposed by processor vendors,
Autor:
Yejin Lee, Hyunji Choi, Sunhong Min, Hyunseung Lee, Sangwon Beak, Dawoon Jeong, Jae W. Lee, Tae Jun Ham
Publikováno v:
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA).
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200823
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::27d0d2734497592371ddcd9a8baea14b
https://doi.org/10.1007/978-3-031-20083-0_11
https://doi.org/10.1007/978-3-031-20083-0_11
Autor:
Jeonghun Gong, Shine Kim, Jonghyun Bae, Wenjing Jin, Hakbeom Jang, Jae W. Lee, Tae Jun Ham, Jaeyoung Jang, Jinkyu Jeong
Publikováno v:
IEEE Micro. 39:73-81
This article presents SSDStreamer, an SSD-based caching system for large-scale machine learning. By using DRAM as stream buffer, instead of an upper-level cache, SSDStreamer significantly outperforms state-of-the-art multilevel caching systems on Apa
Publikováno v:
ACM Transactions on Architecture and Code Optimization. 16:1-23
Decoupling techniques have been proposed to reduce the amount of memory latency exposed to high-performance accelerators as they fetch data. Although decoupled access-execute (DAE) and more recent decoupled data supply approaches offer promising sing