Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Tadano, Yukihide"'
We study non-smoothness of the fundamental solution for the Schr\"{o}dinger equation with a spherically symmetric and super-quadratic potential in the sence that $V(x)\geq C|x|^{2+\varepsilon}$ at infinity with constants $C>0 $ and $\varepsilon>0$. M
Externí odkaz:
http://arxiv.org/abs/2310.15536
Publikováno v:
Pure Appl. Analysis 6 (2024) 765-788
Continuum limits of Laplace operators on general lattices are considered, and it is shown that these operators converge to elliptic operators on the Euclidean space in the sense of the generalized norm resolvent convergence. We then study operators o
Externí odkaz:
http://arxiv.org/abs/2307.08894
We consider the quantum graph Hamiltonian on the square lattice in Euclidean space, and we show that the spectrum of the Hamiltonian converges to the corresponding Schr\"odinger operator on the Euclidean space in the continuum limit, and that the cor
Externí odkaz:
http://arxiv.org/abs/2202.06586
Autor:
Tadano, Yukihide
We consider a scattering theory for convolution operators on $\mathcal{H}=\ell^2(\mathbb{Z}^d; \mathbb{C}^n)$ perturbed with a long-range potential $V:\mathbb{Z}^d\to\mathbb{R}^n$. One of the motivating examples is discrete Schr\"odinger operators on
Externí odkaz:
http://arxiv.org/abs/2012.00412
Autor:
Nakamura, Shu, Tadano, Yukihide
The norm resolvent convergence of discrete Schr\"odinger operators to a continuum Schr\"odinger operator in the continuum limit is proved under relatively weak assumptions. This result implies, in particular, the convergence of the spectrum with resp
Externí odkaz:
http://arxiv.org/abs/1903.10656
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tadano, Yukihide
We consider a long-range scattering theory for discrete Schr\"odinger operators on the hexagonal lattice, which describe tight-binding Hamiltonians on the graphene sheet. We construct Isozaki-Kitada modifiers for a pair of the difference Laplacian on
Externí odkaz:
http://arxiv.org/abs/1811.11527
Autor:
Tadano, Yukihide, Taira, Kouichi
In this note, uniform bounds of the Birman-Schwinger operators in the discrete setting are studied. For uniformly decaying potentials, we obtain the same bound as in the continuous setting. However, for non-uniformly decaying potential, our results a
Externí odkaz:
http://arxiv.org/abs/1811.10279
Autor:
Tadano, Yukihide
In this paper, we define time-independent modifiers to construct a long-range scattering theory for discrete schr\"odinger operators on the square lattice $\mathbb{Z}^N$. We prove the existence and completeness of modified wave operators in terms of
Externí odkaz:
http://arxiv.org/abs/1605.02466
Autor:
TADANO, Yukihide
Publikováno v:
数理解析研究所講究録. 2200:84-91