Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Tacelli, Cristian"'
Assuming a weighted Nash type inequality for the generator $-A$ of a Markov semigroup, we prove a weighted Nash type inequality for its fractional power and deduce non-uniform bounds on the transition kernel corresponding to the Markov semigroup gene
Externí odkaz:
http://arxiv.org/abs/2408.12679
We prove that operators of the form $A=-a(x)^2\Delta^{2}$, with suitable growth conditions on the coefficient $a(x)$, generate analytic semigroups in $L^1(\mathbb{R}^N)$. In particular, we deduce generation results for the operator $A :=- (1+|x|^2)^{
Externí odkaz:
http://arxiv.org/abs/2407.10551
Publikováno v:
Communications on Pure and Applied Analysis. 2024
We prove that operators of the form $A=-a(x)^2\Delta^{2}$, with $|D a(x)|\leq c a(x)^\frac{1}{2}$, generate analytic semigroups in $L^p(\mathbb{R}^N)$ for $1
Externí odkaz:
http://arxiv.org/abs/2401.14187
Autor:
Goldstein, Gisele R., Goldstein, Jerome A., Kogoj, Alessia E., Rhandi, Abdelaziz, Tacelli, Cristian
In this paper we generalize the instantaneous blowup result from [3] and [15] to the heat equation perturbed by singular potentials on the Heisenberg group.
Externí odkaz:
http://arxiv.org/abs/2204.04548
Autor:
Gregorio, Federica, Tacelli, Cristian
In this paper we study generation results in $L^2(\mathbb{R}^N)$ for the fourth order Schr\"odinger type operator with unbounded coefficients of the form $$A=a^{2} \Delta ^2+V^{2}$$ where $a(x)=1+|x|^{\alpha}$ and $V=|x|^{\beta}$ with $\alpha>0$ and
Externí odkaz:
http://arxiv.org/abs/2204.03988
In this paper we consider the symmetric Kolmogorov operator $L=\Delta +\frac{\nabla \mu}{\mu}\cdot \nabla$ on $L^2(\mathbb R^N,d\mu)$, where $\mu$ is the density of a probability measure on $\mathbb R^N$. Under general conditions on $\mu$ we prove fi
Externí odkaz:
http://arxiv.org/abs/2104.03811
In this paper we study minimal realizations in $L^p(\mathbb{R}^N)$ of the second order elliptic operator \begin{equation*} { A_{b,c}} := (1+|x|^\alpha)\Delta + b|x|^{\alpha-2}x\cdot\nabla - c |x|^{\alpha-2} - |x|^{\beta} , \quad x \in \mathbb{R}^N, \
Externí odkaz:
http://arxiv.org/abs/1912.09071
We give general conditions to state the weighted Hardy inequality \[ c\int_{\mathbb{R}^N}\frac{\varphi^2} {|x|^2}d\mu\leq\int_{\mathbb{R}^N}|\nabla \varphi |^2 d\mu+C\int_{\mathbb{R}^N} \varphi^2d\mu,\quad \varphi\in C_c^{\infty}(\mathbb{R}^N),\,c\le
Externí odkaz:
http://arxiv.org/abs/1703.10567
Autor:
Canale, Anna, Tacelli, Cristian
In the paper the principal result obtained is the estimate for the heat kernel associated to the Schr\"odinger type operator $(1+|x|^\alpha)\Delta-|x|^\beta$ \[ k(t,x,y)\leq Ct^{-\frac{\theta}{2}}\frac {\varphi(x)\varphi(y)}{1+|x|^\alpha}, \] where $
Externí odkaz:
http://arxiv.org/abs/1604.03960
We prove that the heat kernel associated to the Schr\"odinger type operator $A:=(1+|x|^\alpha)\Delta-|x|^\beta$ satisfies the estimate $$k(t,x,y)\leq c_1e^{\lambda_0t}e^{c_2t^{-b}}\frac{(|x||y|)^{-\frac{N-1}{2}-\frac{\beta-\alpha}{4}}}{1+|y|^\alpha}
Externí odkaz:
http://arxiv.org/abs/1501.00816