Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Taboka Prince Chalebgwa"'
Publikováno v:
Axioms, Vol 11, Iss 3, p 118 (2022)
This article initiates the study of topological transcendental fields F which are subfields of the topological field C of all complex numbers such that F only consists of rational numbers and a nonempty set of transcendental numbers. F, with the topo
Externí odkaz:
https://doaj.org/article/0bd1d1d70744498fa45e0e507cb60cdc
Autor:
Taboka Prince Chalebgwa
Publikováno v:
International Journal of Number Theory. 16:1607-1636
We extend two results by Boxall and Jones on algebraic values of certain analytic functions to meromorphic functions. We obtain [Formula: see text] bounds for the number of algebraic points of height at most [Formula: see text] on certain restriction
Autor:
Taboka Prince Chalebgwa
Publikováno v:
Canadian Mathematical Bulletin. 63:536-546
Given an entire function $f$ of finite order $\unicode[STIX]{x1D70C}$ and positive lower order $\unicode[STIX]{x1D706}$, Boxall and Jones proved a bound of the form $C(\log H)^{\unicode[STIX]{x1D702}(\unicode[STIX]{x1D706},\unicode[STIX]{x1D70C})}$ f
Autor:
Taboka Prince Chalebgwa
We give a partial answer to a question attributed to Chris Miller on algebraic values of certain transcendental functions of order less than one. We obtain C(logH)^n bounds for the number of algebraic points of height at most H on certain subsets of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::613c0292bcb60470739caa92b7c0a333