Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Tabea Rebafka"'
Publikováno v:
BMC Bioinformatics, Vol 25, Iss 1, Pp 1-18 (2024)
Abstract Background Graphical representations are useful to model complex data in general and biological interactions in particular. Our main motivation is the comparison of metabolic networks in the wider context of developing noninvasive accurate d
Externí odkaz:
https://doaj.org/article/36b5f1d4faee491c9b4c96463c1595b6
The self-organizing map is an unsupervised neural network which is widely used for data visualisation and clustering in the field of chemometrics. The classical Kohonen algorithm that computes self-organizing maps is suitable only for complete data w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31b45a2bca3593ee171522ff08103ac6
http://arxiv.org/abs/2202.07963
http://arxiv.org/abs/2202.07963
Publikováno v:
Electronic Journal of Statistics. 16
Publikováno v:
Biometrika. 105:665-680
To model recurrent interaction events in continuous time, an extension of the stochastic block model is proposed where every individual belongs to a latent group and interactions between two individuals follow a conditional inhomogeneous Poisson proc
Publikováno v:
2018 26th European Signal Processing Conference (EUSIPCO)
2018 26th European Signal Processing Conference (EUSIPCO), Sep 2018, Rome, Italy. pp.286-290, ⟨10.23919/EUSIPCO.2018.8553295⟩
EUSIPCO
2018 26th European Signal Processing Conference (EUSIPCO), Sep 2018, Rome, Italy. pp.286-290, ⟨10.23919/EUSIPCO.2018.8553295⟩
EUSIPCO
International audience; This paper addresses the problem of dimension reduction of noisy data, more precisely the challenge to determine the dimension of the subspace where the observed signal lives in. Based on results from random matrix theory, two
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16618537c6a8d1188d03a32ac215c4b1
https://utt.hal.science/hal-02307357
https://utt.hal.science/hal-02307357
Autor:
Tabea Rebafka, François Roueff
Publikováno v:
Mathematical Methods of Statistics
Mathematical Methods of Statistics, 2015, 24 (3), pp.200-224
Mathematical Methods of Statistics, Allerton Press, Springer (link), 2015, 24 (3), pp.200-224
Mathematical Methods of Statistics, 2015, 24 (3), pp.200-224
Mathematical Methods of Statistics, Allerton Press, Springer (link), 2015, 24 (3), pp.200-224
International audience; We consider the problem of estimating the mixing density $f$ from $n$ i.i.d. observations distributed according to a mixture density with unknown mixing distribution. In contrast with finite mixtures models, here the distribut
Autor:
Fabienne Comte, Tabea Rebafka
Publikováno v:
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference, Elsevier, 2016, 174, pp.104-128. ⟨10.1016/j.jspi.2016.01.008⟩
Journal of Statistical Planning and Inference, 2016, 174, pp.104-128. ⟨10.1016/j.jspi.2016.01.008⟩
Journal of Statistical Planning and Inference, Elsevier, 2016, 174, pp.104-128. 〈10.1016/j.jspi.2016.01.008〉
Journal of Statistical Planning and Inference, Elsevier, 2016, 174, pp.104-128. ⟨10.1016/j.jspi.2016.01.008⟩
Journal of Statistical Planning and Inference, 2016, 174, pp.104-128. ⟨10.1016/j.jspi.2016.01.008⟩
Journal of Statistical Planning and Inference, Elsevier, 2016, 174, pp.104-128. 〈10.1016/j.jspi.2016.01.008〉
Starting from a real data example in fluorescence, the problem of nonparametric estimation of a density in a biased data model is considered. Bias correction can be done in two ways: either an estimator is computed with the data and in a second time
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ada2de228978234688c5ad8d154c4023
https://hal.archives-ouvertes.fr/hal-01101970/document
https://hal.archives-ouvertes.fr/hal-01101970/document
Publikováno v:
Chemometrics and Intelligent Laboratory Systems
Chemometrics and Intelligent Laboratory Systems, Elsevier, 2007, 89 (2), pp.69-81. ⟨10.1016/j.chemolab.2007.06.001⟩
Chemometrics and Intelligent Laboratory Systems, 2007, 89 (2), pp.69-81. ⟨10.1016/j.chemolab.2007.06.001⟩
Chemometrics and Intelligent Laboratory Systems, Elsevier, 2007, 89 (2), pp.69-81. ⟨10.1016/j.chemolab.2007.06.001⟩
Chemometrics and Intelligent Laboratory Systems, 2007, 89 (2), pp.69-81. ⟨10.1016/j.chemolab.2007.06.001⟩
International audience; Recently a new validation procedure was developed using a graphical statistical tool - the so-called accuracy profile - that makes interpretation of results easy and straightforward. Accuracy profiles are estimated by toleranc
Autor:
Fabienne Comte, Tabea Rebafka
Publikováno v:
Electronic journal of statistics
Electronic journal of statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2012, 6, pp.2002-2037
Electronic Journal of Statistics
Electronic Journal of Statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2012, 6, pp.2002-2037. ⟨10.1214/12-EJS737⟩
Electronic journal of statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2012, 6, pp.2002-2037. 〈10.1214/12-EJS737〉
Electronic journal of statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2012, 6, pp.2002-2037. ⟨10.1214/12-EJS737⟩
Electron. J. Statist. 6 (2012), 2002-2037
Electronic Journal of Statistics, 2012, 6, pp.2002-2037. ⟨10.1214/12-EJS737⟩
Electronic journal of statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2012, 6, pp.2002-2037
Electronic Journal of Statistics
Electronic Journal of Statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2012, 6, pp.2002-2037. ⟨10.1214/12-EJS737⟩
Electronic journal of statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2012, 6, pp.2002-2037. 〈10.1214/12-EJS737〉
Electronic journal of statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2012, 6, pp.2002-2037. ⟨10.1214/12-EJS737⟩
Electron. J. Statist. 6 (2012), 2002-2037
Electronic Journal of Statistics, 2012, 6, pp.2002-2037. ⟨10.1214/12-EJS737⟩
Motivated by fluorescence lifetime measurements, this paper considers the problem of nonparametric density estimation in the pile-up model, where observations suffer also from measurement errors. In the pile-up model, an observation is defined as the
Publikováno v:
The international journal of biostatistics
The international journal of biostatistics, 2010, 6 (1)
International Journal of Biostatistics
International Journal of Biostatistics, De Gruyter, 2010, 6 (1)
The international journal of biostatistics, 2010, 6 (1)
International Journal of Biostatistics
International Journal of Biostatistics, De Gruyter, 2010, 6 (1)
International audience; A fast and efficient estimation method is proposed that compensates the so-called pile-up effect encountered in fluorescence lifetime measurements. The pile-up effect is due to the fact that only the shortest arrival time of a