Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Taştan, Hakan Mete"'
Autor:
TRAORE, MOCTAR1 moctar.traore@ogr.iu.edu.tr, TAŞTAN, HAKAN METE1 hakmete@istanbul.edu.tr, AYDIN, SIBEL GERDAN1 sibel.gerdan@istanbul.edu.tr
Publikováno v:
Miskolc Mathematical Notes. 2024, Vol. 25 Issue 1, p493-508. 16p.
Autor:
Taştan, Hakan Mete, Gerdan, Sibel
We investigate new Clairaut conditions for anti-invariant submersions from normal almost contact metric manifolds onto Riemannian manifolds. We prove that there is no Clairaut anti-invariant submersion admitting vertical Reeb vector field when the to
Externí odkaz:
http://arxiv.org/abs/1703.10866
Autor:
Taştan, Hakan Mete
We study biwarped product submanifolds which are special cases of multiply warped product submanifolds in K\"{a}hler manifolds. We observe the non-existence of such submanifolds under some circumstances. We show that there exists a non-trivial biwarp
Externí odkaz:
http://arxiv.org/abs/1611.08469
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Taştan, Hakan Mete
We introduce warped product skew semi-invariant submanifolds of order $1$ of a locally product Riemannian manifold. We give a necessary and sufficient condition for skew semi-invariant submanifold of order 1 to be a locally warped product. We also pr
Externí odkaz:
http://arxiv.org/abs/1406.2577
Autor:
Taştan, Hakan Mete, Özdemir, Fatma
In the present paper, we study hemi-slant submanifolds of a locally product Riemannian manifold. We prove that the anti-invariant distribution which is involved in the definition of hemi-slant submanifold is integrable and give some applications of t
Externí odkaz:
http://arxiv.org/abs/1405.6687
Autor:
Taştan, Hakan Mete
We study anti-holomorphic semi-invariant submersions from K\"{a}hlerian manifolds onto Riemannian manifolds. We prove that all distributions which are involved in the definition of the submersion are integrable. We also prove that the O'Neill's tenso
Externí odkaz:
http://arxiv.org/abs/1404.2385
Autor:
Taştan, Hakan Mete
We give a condition for an almost constant-type manifold to be a constant-type manifold, and holomorphic and $R$-invariant submanifolds of almost Hermitian manifolds are studied. Generalizations of some results in [5] are given.
Externí odkaz:
http://arxiv.org/abs/1311.2515
Autor:
Taştan, Hakan Mete
We studied the axiom of anti-invariant 2-spheres and the axiom of co-holomorphic $(2n+1)$-spheres. We proved that a nearly K\"{a}hlerian manifold satisfying the axiom of anti-invariant 2-spheres is a space of constant holomorphic sectional curvature.
Externí odkaz:
http://arxiv.org/abs/1311.2509
Autor:
Taştan, Hakan Mete
In this paper, we study Riemannian, anti-invariant Riemannian and Lagrangian submersions. We prove that the horizontal distribution of a Lagrangian submersion from a Kaehlerian manifold is integrable. We also give some applications of this result. Mo
Externí odkaz:
http://arxiv.org/abs/1311.1676