Zobrazeno 1 - 10
of 96
pro vyhledávání: '"TSANKOV, TODOR"'
Autor:
Tsankov, Todor
We prove two theorems in the ergodic theory of infinite permutation groups. First, generalizing a theorem of Nessonov for the infinite symmetric group, we show that every non-singular action of a non-archimedean, Roelcke precompact, Polish group on a
Externí odkaz:
http://arxiv.org/abs/2411.04716
Affine logic is a fragment of continuous logic, introduced by Bagheri, in which only affine functions are allowed as connectives. This has the effect of endowing type spaces with the structure of compact convex sets. We study extremal models of affin
Externí odkaz:
http://arxiv.org/abs/2407.13344
Autor:
Boudec, Adrien Le, Tsankov, Todor
Let $G$ be a locally compact group. For every $G$-flow $X$, one can consider the stabilizer map $x \mapsto G_x$, from $X$ to the space $\mathrm{Sub}(G)$ of closed subgroups of $G$. This map is not continuous in general. We prove that if one passes fr
Externí odkaz:
http://arxiv.org/abs/2302.03083
Let a group $\Gamma$ act on a paracompact, locally compact, Hausdorff space $M$ by homeomorphisms and let $2^M$ denote the set of closed subsets of $M$. We endow $2^M$ with the Chabauty topology, which is compact and admits a natural $\Gamma$-action
Externí odkaz:
http://arxiv.org/abs/2210.16297
Autor:
Basso, Gianluca, Tsankov, Todor
Kaleidoscopic groups are a class of permutation groups recently introduced by Duchesne, Monod, and Wesolek. Starting with a permutation group $\Gamma$, the kaleidoscopic construction produces another permutation group $\mathcal{K}(\Gamma)$ which acts
Externí odkaz:
http://arxiv.org/abs/2209.02607
We study the complexity of isomorphism of classes of metric structures using methods from infinitary continuous logic. For Borel classes of locally compact structures, we prove that if the equivalence relation of isomorphism is potentially $\mathbf{\
Externí odkaz:
http://arxiv.org/abs/2109.08559
Autor:
Jahel, Colin, Tsankov, Todor
Let $M$ be an $\aleph_0$-categorical structure and assume that $M$ has no algebraicity and has weak elimination of imaginaries. Generalizing classical theorems of de Finetti and Ryll-Nardzewski, we show that any ergodic, $\operatorname{Aut}(M)$-invar
Externí odkaz:
http://arxiv.org/abs/2007.00281
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Answering a question of Uspenskij, we prove that if $X$ is a closed manifold of dimension $2$ or higher or the Hilbert cube, then the universal minimal flow of $\mathrm{Homeo}(X)$ is not metrizable. In dimension $3$ or higher, we also show that the m
Externí odkaz:
http://arxiv.org/abs/1910.12220
Publikováno v:
Duke Math. J. 170, no. 4 (2021), 615-651
Generalizing a result of Furstenberg, we show that for every infinite discrete group $G$, the Bernoulli flow $2^G$ is disjoint from every minimal $G$-flow. From this, we deduce that the algebra generated by the minimal functions $\mathfrak{A}(G)$ is
Externí odkaz:
http://arxiv.org/abs/1901.03406