Zobrazeno 1 - 10
of 483
pro vyhledávání: '"TRIPATHI, AMIT"'
Autor:
Dey, Sutapa, Tripathi, Amit
We use a quasilift type construction to obtain some bounds on the depth of the tensor product of certain modules over a local $\mathcal{TE}$ ring. We recover a result of Celikbas, Sadeghi, and Takahashi for local complete intersection rings. Some gen
Externí odkaz:
http://arxiv.org/abs/2412.01392
Autor:
Sinha, Shashi Ranjan, Tripathi, Amit
We show that if Auslander`s depth formula holds for non-zero Tor-independent modules over Cohen-Macaulay local rings of dimension 1, then it holds for such modules over any Cohen-Macaulay local ring. More generally, we show that the depth formula for
Externí odkaz:
http://arxiv.org/abs/2302.00035
The $k$-semi equivelar maps, for $k \geq 2$, are generalizations of maps on the surfaces of Johnson solids to closed surfaces other than the 2-sphere. In the present study, we determine 2-semi equivelar maps of curvature 0 exhaustively on the torus a
Externí odkaz:
http://arxiv.org/abs/2206.06148
Autor:
Sinha, Shashi Ranjan, Tripathi, Amit
Publikováno v:
In Journal of Algebra 15 March 2024 642:49-59
Autor:
Tripathi, Amit K., Desai, Priyanka P., Tyagi, Antariksh, Lampe, Jana B., Srivastava, Yogesh, Donkor, Michael, Jones, Harlan P., Dzyuba, Sergei V., Crossley, Eric, Williams, Noelle S., Vishwanatha, Jamboor K.
Publikováno v:
In Journal of Biological Chemistry March 2024 300(3)
Publikováno v:
In IFAC PapersOnLine 2024 57:125-130
Publikováno v:
Mathematics in Engineering, Science & Aerospace (MESA). 2024, Vol. 15 Issue 2, p411-424. 14p.
Publikováno v:
Mathematics in Engineering, Science & Aerospace (MESA). 2024, Vol. 15 Issue 2, p323-345. 23p.