Zobrazeno 1 - 10
of 81
pro vyhledávání: '"TRAPA, PETER"'
Autor:
Barchini, Leticia, Trapa, Peter E.
Motivated by relating the representation theory of the split real and $p$-adic forms of a connected reductive algebraic group $G$, we describe a subset of $2^r$ orbits on the complex flag variety for a certain symmetric subgroup. (Here $r$ is the sem
Externí odkaz:
http://arxiv.org/abs/2402.17952
Autor:
Barchini, Leticia, Trapa, Peter E.
Fix an integral semisimple element $\lambda$ in the Lie algebra $\mathfrak{g}$ of a complex reductive algebraic group $G$. Let $L$ denote the centralizer of $\lambda$ in $G$ and let $\mathfrak{g}(-1)$ denote the $-1$ eigenspace of $\mathrm{ad}(\lambd
Externí odkaz:
http://arxiv.org/abs/2402.17956
Autor:
Barbasch, Dan M., Trapa, Peter E.
The purpose of this paper is to define a set of representations of Sp(p,q) and SO*(2n), the unipotent representations of the title, and establish their unitarity. The unipotent representations considered here properly contain the special unipotent re
Externí odkaz:
http://arxiv.org/abs/1806.07770
Spheres can be written as homogeneous spaces $G/H$ for compact Lie groups in a small number of ways. In each case, the decomposition of $L^2(G/H)$ into irreducible representations of $G$ contains interesting information. We recall these decomposition
Externí odkaz:
http://arxiv.org/abs/1803.01267
We give examples of reducible characteristic cycles for irreducible Harish-Chandra modules for $\mathrm{U}(p,q)$ by analyzing a four-dimensional singular subvariety of $\mathbb{C}^8$. We relate this singularity to the Kashiwara-Saito singularity aris
Externí odkaz:
http://arxiv.org/abs/1801.03465
Let G be a real reductive Lie group with maximal compact sub- group K. We generalize the usual notion of Dirac index to a twisted version, which is nontrivial even in case G and K do not have equal rank. We compute ordinary and twisted indices of sta
Externí odkaz:
http://arxiv.org/abs/1606.05425
Let $ \pi $ be an irreducible Harish-Chandra $ (\mathfrak{g}, K) $-module, and denote its associated variety by $ AV(\pi) $. If $ AV(\pi) $ is reducible, then each irreducible component must contain codimension one boundary component. Thus we are int
Externí odkaz:
http://arxiv.org/abs/1403.7982
Autor:
Trapa, Peter E., 1974
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1998.
Includes bibliographical references (p. 71-72).
Peter Engel Trapa.
Ph.D.
Includes bibliographical references (p. 71-72).
Peter Engel Trapa.
Ph.D.
Externí odkaz:
http://hdl.handle.net/1721.1/47470
We present a finite algorithm for computing the set of irreducible unitary representations of a real reductive group G. The Langlands classification, as formulated by Knapp and Zuckerman, exhibits any representation with an invariant Hermitian form a
Externí odkaz:
http://arxiv.org/abs/1212.2192
We define the algebraic Dirac induction map $\Ind_D$ for graded affine Hecke algebras. The map $\Ind_D$ is a Hecke algebra analog of the explicit realization of the Baum-Connes assembly map in the $K$-theory of the reduced $C^*$-algebra of a real red
Externí odkaz:
http://arxiv.org/abs/1201.2130