Zobrazeno 1 - 10
of 48
pro vyhledávání: '"TOPRAK, Ebru"'
We study the long-time behavior of solutions to the Schr\"odinger equation with a repulsive Coulomb potential on $\mathbb{R}^3$ for spherically symmetric initial data. Our approach involves computing the distorted Fourier transform of the action of t
Externí odkaz:
http://arxiv.org/abs/2309.01313
Autor:
Toprak, Ebru
We study the scattering poles of $\sqrt{-\Delta} + V$, where $V$ is a compactly supported, bounded and complex valued potential. We show that the resolvent operator $ \chi R_V \chi$ has a meromorphic continuation to the whole Riemannian surface of $\
Externí odkaz:
http://arxiv.org/abs/2304.01493
Publikováno v:
General Relativity and Gravitation vol 53, art 15 (2021)
The present paper studies the Dirac Hamiltonian of a test electron with a domain of bi-spinor wave functions supported on the static region inside the Cauchy horizon of the subextremal RWN black hole spacetime, respectively inside the event horizon o
Externí odkaz:
http://arxiv.org/abs/2009.07358
Publikováno v:
J. Math. Phys. vol.61, art.092303, 22pp (2020)
This paper studies how the static non-linear electromagnetic-vacuum spacetime of a point nucleus with negative bare mass affects the self-adjointness of the general-relativistic Dirac Hamiltonian for a test electron, without and with an anomalous mag
Externí odkaz:
http://arxiv.org/abs/2006.08587
Publikováno v:
J. Differential Equations, 271, (2021), 152-185
We study the fourth order Schr\"odinger operator $H=(-\Delta)^2+V$ for a short range potential in three space dimensions. We provide a full classification of zero energy resonances and study the dynamic effect of each on the $L^1\to L^\infty$ dispers
Externí odkaz:
http://arxiv.org/abs/1905.02890
Autor:
Green, William R., Toprak, Ebru
Publikováno v:
J. Differential Equations, 267, (2019), no. 3, 1899-1954
We study the fourth order Schr\"odinger operator $H=(-\Delta)^2+V$ for a decaying potential $V$ in four dimensions. In particular, we show that the $t^{-1}$ decay rate holds in the $L^1\to L^\infty$ setting if zero energy is regular. Furthermore, if
Externí odkaz:
http://arxiv.org/abs/1810.03678
Publikováno v:
Journal of Differential Equations Volume 264, Issue 9, 5 May 2018, Pages 5802-5837
We study the massive two dimensional Dirac operator with an electric potential. In particular, we show that the $t^{-1}$ decay rate holds in the $L^1\to L^\infty$ setting if the threshold energies are regular. We also show these bounds hold in the pr
Externí odkaz:
http://arxiv.org/abs/1707.05459
Publikováno v:
Amer. J. Math., 141, no. 5, Oct. 2019, 1217-1258
We investigate $L^1\to L^\infty$ dispersive estimates for the three dimensional Dirac equation with a potential. We also classify the structure of obstructions at the thresholds of the essential spectrum as being composed of a two dimensional space o
Externí odkaz:
http://arxiv.org/abs/1609.05164
Publikováno v:
In Journal of Differential Equations 15 January 2021 271:152-185
Autor:
Green, William R., Toprak, Ebru
Publikováno v:
Differential and Integral Equations, Volume 30, Number 5/6 (2017), 329-386
We investigate dispersive estimates for the Schr\"odinger operator $H=-\Delta +V$ with $V$ is a real-valued decaying potential when there are zero energy resonances and eigenvalues in four spatial dimensions. If there is a zero energy obstruction, we
Externí odkaz:
http://arxiv.org/abs/1509.06262