Zobrazeno 1 - 10
of 162
pro vyhledávání: '"TOMIYAMA, JUN"'
Autor:
de Jeu, Marcel, Tomiyama, Jun
Publikováno v:
Adv. Oper. Theory 3 (2018), 42--52
If $X$ is a compact Hausdorff space and $\sigma$ is a homeomorphism of $X$, then an involutive Banach algebra $\ell^1(\Sigma)$ of crossed product type is naturally associated with the topological dynamical system $\Sigma=(X,\sigma)$. We initiate the
Externí odkaz:
http://arxiv.org/abs/1702.04112
Topologically irreducible representations of the Banach *-algebra associated with a dynamical system
Autor:
Kishimoto, Aki, Tomiyama, Jun
We describe (infinite-dimensional) irreducible representations of the crossed product C$^*$-algebra associated with a topological dynamical system (based on $Z$) and we show that their restrictions to the underling $\ell^1$-Banach $*$-algebra are not
Externí odkaz:
http://arxiv.org/abs/1604.02539
Publikováno v:
In Engineering Science and Technology, an International Journal October 2021 24(5):1262-1271
Autor:
de Jeu, Marcel, Tomiyama, Jun
Publikováno v:
Adv. Math. 301 (2016), 79--115
If $X$ is a compact Hausdorff space and $\sigma$ is a homeomorphism of $X$, then a Banach algebra $\ell^1(\Sigma)$ of crossed product type is naturally associated with this topological dynamical system $\Sigma=(X,\sigma)$. If $X$ consists of one poin
Externí odkaz:
http://arxiv.org/abs/1407.8328
Let $\varphi$ be a normal state on the algebra $B(H)$ of all bounded operators on a Hilbert space $H$, $f$ a strictly positive, continuous function on $(0, \infty)$, and let $g$ be a function on $(0, \infty)$ defined by $g(t) = \frac{t}{f(t)}$. We wi
Externí odkaz:
http://arxiv.org/abs/1207.5201
Autor:
de Jeu, Marcel, Tomiyama, Jun
Publikováno v:
Banach J. Math. Anal. 7 (2013), 103-135
If X is a compact Hausdorff space, supplied with a homeomorphism, then a crossed product involutive Banach algebra is naturally associated with these data. If X consists of one point, then this algebra is the group algebra of the integers. In this pa
Externí odkaz:
http://arxiv.org/abs/1206.0158
Autor:
de Jeu, Marcel, Tomiyama, Jun
Publikováno v:
Ann. Funct. Anal. 4 (2013), 61-63
We show that a unital involutive Banach algebra, with identity of norm one and continuous involution, is a C*-algebra, with the given involution and norm, if every continuous linear functional attaining its norm at the identity is positive.
Comm
Comm
Externí odkaz:
http://arxiv.org/abs/1205.6830
Autor:
de Jeu, Marcel, Tomiyama, Jun
Publikováno v:
Studia Math. 208 (2012), 47-75
If $\Sigma=(X,\sigma)$ is a topological dynamical system, where $X$ is a compact Hausdorff space and $\sigma$ is a homeomorphism of $X$, then a crossed product Banach $\sp{*}$-algebra $\ell^1(\Sigma)$ is naturally associated with these data. If $X$ c
Externí odkaz:
http://arxiv.org/abs/1106.1343
Autor:
Osaka, Hiroyuki, Tomiyama, Jun
We continue the analysis in [H. Osaka and J. Tomiyama, Double piling structure of matrix monotone functions and of matrix convex functions, Linear and its Applications 431(2009), 1825 - 1832] in which the followings three assertions at each label $n$
Externí odkaz:
http://arxiv.org/abs/1104.3372
Publikováno v:
J. Funct. Anal. 262 (2012) 4746-4765
Given a topological dynamical system $\Sigma = (X, \sigma)$, where $X$ is a compact Hausdorff space and $\sigma$ a homeomorphism of $X$, we introduce the associated Banach $^*$-algebra crossed product $\ell^1 (\Sigma)$ and analyse its ideal structure
Externí odkaz:
http://arxiv.org/abs/0902.0690