Zobrazeno 1 - 10
of 6 402
pro vyhledávání: '"TOBOGGANS"'
Autor:
Znojil, Miloslav
Publikováno v:
J. Phys. A: Math. Theor. 41 (2008) 215304
Quantum systems with real energies generated by an apparently non-Hermitian Hamiltonian may re-acquire the consistent probabilistic interpretation via an ad hoc metric which specifies the set of observables in the updated Hilbert space of states. The
Externí odkaz:
http://arxiv.org/abs/0803.0403
Autor:
Znojil, Miloslav
Publikováno v:
SIGMA 7:018,2011
In supersymmetric quantum mechanics the emergence of a singularity may lead to the breakdown of isospectrality between partner potentials. One of the regularization recipes is based on a topologically nontrivial, multisheeted complex deformations of
Externí odkaz:
http://arxiv.org/abs/1102.5162
Autor:
Znojil, Miloslav
Publikováno v:
J. Phys.: Conference Series 128 (2008) 012046 (12pp)
A generalization of the concept of PT-symmetric Hamiltonians H=p^2+V(x) is described. It uses analytic potentials V(x) (with singularities) and a generalized concept of PT-symmetric asymptotic boundary conditions. Nontrivial toboggans are defined as
Externí odkaz:
http://arxiv.org/abs/0710.1485
Autor:
Znojil, Miloslav
Publikováno v:
Phys. Lett. A 372 (2008) 584 - 590
Wave functions describing quantum toboggans with two branch points (QT2) are defined along complex contours of coordinates which spiral around these branch points. The classification of QT2 is found in terms of certain ``winding descriptors" $\varrho
Externí odkaz:
http://arxiv.org/abs/0708.0087
Autor:
Znojil, Miloslav
Publikováno v:
Acta Polytech.50:84-90,2010
Certain complex-contour (a.k.a. quantum-toboggan) generalizations of Schroedinger's bound-state problem are reviewed and studied in detail. Our key message is that the practical numerical solution of these atypical eigenvalue problems may perceivably
Externí odkaz:
http://arxiv.org/abs/1004.0453
Autor:
Znojil, Miloslav
Publikováno v:
J. Phys. A: Math. Gen. 39 (2006) 13325-13336
Even if the motion of a quantum (quasi-)particle proceeds along a left-right-symmetric (PT-symmetric) curved path in complex plane, the spectrum of bound states may remain physical, i.e., real and bounded below). We propose a generalization. Firstly,
Externí odkaz:
http://arxiv.org/abs/quant-ph/0606166
Autor:
Znojil, Miloslav
Publikováno v:
Phys.Lett.A342:36-47,2005
Among all the PT-symmetric potentials defined on complex coordinate contours C(s), the name "quantum toboggan" is reserved for those whose C(s) winds around a singularity and lives on at least two different Riemann sheets. An enriched menu of prospec
Externí odkaz:
http://arxiv.org/abs/quant-ph/0502041
Autor:
Isabelle Grell
Publikováno v:
Genesis. :79-91
Autor:
Henry, David
Publikováno v:
Today's Trucking. Dec2023, Vol. 37 Issue 10, p19-19. 1p.
Autor:
M. Znojil
Publikováno v:
Acta Polytechnica, Vol 50, Iss 5 (2010)
Certain complex-contour (a.k.a. quantum-toboggan) generalizations of Schroedinger’s bound-state problem are reviewed and studied in detail. Our key message is that the practical numerical solution of these atypical eigenvalue problems may perceivab
Externí odkaz:
https://doaj.org/article/54896d0c6b964df683fb82f957f98ca4