Zobrazeno 1 - 10
of 1 849
pro vyhledávání: '"TIAN Gui"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Given a graph $G$ on $n$ vertices, its adjacency matrix and degree diagonal matrix are represented by $A(G)$ and $D(G)$, respectively. The $Q$-spectrum of $G$ consists of all the eigenvalues of its signless Laplacian matrix $Q(G)=A(G)+D(G)$ (includin
Externí odkaz:
http://arxiv.org/abs/2307.14832
A mixed graph $M_{G}$ is the graph obtained from an unoriented simple graph $G$ by giving directions to some edges of $G$, where $G$ is often called the underlying graph of $M_{G}$. In this paper, we introduce two classes of incidence matrices of the
Externí odkaz:
http://arxiv.org/abs/2207.07214
Publikováno v:
In Environmental Research 15 December 2024 263 Part 3
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Given two graphs $G_{1}$ of order $n_{1}$ and $G_{2}$, the neighborhood corona of $G_{1}$ and $G_{2}$, denoted by $G_{1}\bigstar G_{2}$, is the graph obtained by taking one copy of $G_{1}$ and taking $n_{1}$ copies of $G_{2}$, in the meanwhile, linki
Externí odkaz:
http://arxiv.org/abs/2204.08722
Let $G$ be a simple undirected connected graph with the Harary matrix $RD(G)$, which is also called the reciprocal distance matrix of $G$. The reciprocal distance signless Laplacian matrix of $G$ is $RQ(G)=RT(G)+RD(G)$, where $RT(G)$ denotes the diag
Externí odkaz:
http://arxiv.org/abs/2204.03787
Publikováno v:
In NDT and E International October 2024 147
Publikováno v:
In Progress in Nuclear Energy August 2024 173
We study the existence of quantum state transfer in $\mathcal{Q}$-graphs in this paper. The $\mathcal{Q}$-graph of a graph $G$, denoted by $\mathcal{Q}(G)$, is the graph derived from $G$ by plugging a new vertex to each edge of $G$ and joining two ne
Externí odkaz:
http://arxiv.org/abs/2108.07590