Zobrazeno 1 - 10
of 2 213
pro vyhledávání: '"TIAN, Ran"'
Visuomotor robot policies, increasingly pre-trained on large-scale datasets, promise significant advancements across robotics domains. However, aligning these policies with end-user preferences remains a challenge, particularly when the preferences a
Externí odkaz:
http://arxiv.org/abs/2412.04835
Autor:
Yu, Yi, Ge, Junyu, Luo, Manlin, Seo, In Cheol, Kim, Youngmin, Eng, John J. H., Lu, Kunze, Wei, Tian-Ran, Gao, Weibo, Li, Hong, Nam, Donguk
Two-dimensional (2D) materials have emerged as promising candidates for next-generation integrated single-photon emitters (SPEs). However, significant variability in the emission energies of 2D SPEs presents a major challenge in producing identical s
Externí odkaz:
http://arxiv.org/abs/2410.17654
Autor:
Li, Boyi, Zhu, Ligeng, Tian, Ran, Tan, Shuhan, Chen, Yuxiao, Lu, Yao, Cui, Yin, Veer, Sushant, Ehrlich, Max, Philion, Jonah, Weng, Xinshuo, Xue, Fuzhao, Tao, Andrew, Liu, Ming-Yu, Fidler, Sanja, Ivanovic, Boris, Darrell, Trevor, Malik, Jitendra, Han, Song, Pavone, Marco
We propose Wolf, a WOrLd summarization Framework for accurate video captioning. Wolf is an automated captioning framework that adopts a mixture-of-experts approach, leveraging complementary strengths of Vision Language Models (VLMs). By utilizing bot
Externí odkaz:
http://arxiv.org/abs/2407.18908
Autor:
Tian, Ran, Li, Boyi, Weng, Xinshuo, Chen, Yuxiao, Schmerling, Edward, Wang, Yue, Ivanovic, Boris, Pavone, Marco
The autonomous driving industry is increasingly adopting end-to-end learning from sensory inputs to minimize human biases in system design. Traditional end-to-end driving models, however, suffer from long-tail events due to rare or unseen inputs with
Externí odkaz:
http://arxiv.org/abs/2407.00959
Autor:
Wang, Yixiao, Zhang, Yifei, Huo, Mingxiao, Tian, Ran, Zhang, Xiang, Xie, Yichen, Xu, Chenfeng, Ji, Pengliang, Zhan, Wei, Ding, Mingyu, Tomizuka, Masayoshi
The increasing complexity of tasks in robotics demands efficient strategies for multitask and continual learning. Traditional models typically rely on a universal policy for all tasks, facing challenges such as high computational costs and catastroph
Externí odkaz:
http://arxiv.org/abs/2407.01531
Autor:
Chen, Yuxin, Tang, Chen, Li, Chenran, Tian, Ran, Zhan, Wei, Stone, Peter, Tomizuka, Masayoshi
Aligning robot behavior with human preferences is crucial for deploying embodied AI agents in human-centered environments. A promising solution is interactive imitation learning from human intervention, where a human expert observes the policy's exec
Externí odkaz:
http://arxiv.org/abs/2406.16258
Robot decision-making increasingly relies on data-driven human prediction models when operating around people. While these models are known to mispredict in out-of-distribution interactions, only a subset of prediction errors impact downstream robot
Externí odkaz:
http://arxiv.org/abs/2403.04745
Inorganic semiconductor materials are integral to various modern technologies, yet their brittleness and limited deformability/processability pose a significant challenge in the development of flexible, wearable, and miniaturized electronics. The rec
Externí odkaz:
http://arxiv.org/abs/2312.05495
Autor:
Collaboration, Open X-Embodiment, O'Neill, Abby, Rehman, Abdul, Gupta, Abhinav, Maddukuri, Abhiram, Gupta, Abhishek, Padalkar, Abhishek, Lee, Abraham, Pooley, Acorn, Gupta, Agrim, Mandlekar, Ajay, Jain, Ajinkya, Tung, Albert, Bewley, Alex, Herzog, Alex, Irpan, Alex, Khazatsky, Alexander, Rai, Anant, Gupta, Anchit, Wang, Andrew, Kolobov, Andrey, Singh, Anikait, Garg, Animesh, Kembhavi, Aniruddha, Xie, Annie, Brohan, Anthony, Raffin, Antonin, Sharma, Archit, Yavary, Arefeh, Jain, Arhan, Balakrishna, Ashwin, Wahid, Ayzaan, Burgess-Limerick, Ben, Kim, Beomjoon, Schölkopf, Bernhard, Wulfe, Blake, Ichter, Brian, Lu, Cewu, Xu, Charles, Le, Charlotte, Finn, Chelsea, Wang, Chen, Xu, Chenfeng, Chi, Cheng, Huang, Chenguang, Chan, Christine, Agia, Christopher, Pan, Chuer, Fu, Chuyuan, Devin, Coline, Xu, Danfei, Morton, Daniel, Driess, Danny, Chen, Daphne, Pathak, Deepak, Shah, Dhruv, Büchler, Dieter, Jayaraman, Dinesh, Kalashnikov, Dmitry, Sadigh, Dorsa, Johns, Edward, Foster, Ethan, Liu, Fangchen, Ceola, Federico, Xia, Fei, Zhao, Feiyu, Frujeri, Felipe Vieira, Stulp, Freek, Zhou, Gaoyue, Sukhatme, Gaurav S., Salhotra, Gautam, Yan, Ge, Feng, Gilbert, Schiavi, Giulio, Berseth, Glen, Kahn, Gregory, Yang, Guangwen, Wang, Guanzhi, Su, Hao, Fang, Hao-Shu, Shi, Haochen, Bao, Henghui, Amor, Heni Ben, Christensen, Henrik I, Furuta, Hiroki, Bharadhwaj, Homanga, Walke, Homer, Fang, Hongjie, Ha, Huy, Mordatch, Igor, Radosavovic, Ilija, Leal, Isabel, Liang, Jacky, Abou-Chakra, Jad, Kim, Jaehyung, Drake, Jaimyn, Peters, Jan, Schneider, Jan, Hsu, Jasmine, Vakil, Jay, Bohg, Jeannette, Bingham, Jeffrey, Wu, Jeffrey, Gao, Jensen, Hu, Jiaheng, Wu, Jiajun, Wu, Jialin, Sun, Jiankai, Luo, Jianlan, Gu, Jiayuan, Tan, Jie, Oh, Jihoon, Wu, Jimmy, Lu, Jingpei, Yang, Jingyun, Malik, Jitendra, Silvério, João, Hejna, Joey, Booher, Jonathan, Tompson, Jonathan, Yang, Jonathan, Salvador, Jordi, Lim, Joseph J., Han, Junhyek, Wang, Kaiyuan, Rao, Kanishka, Pertsch, Karl, Hausman, Karol, Go, Keegan, Gopalakrishnan, Keerthana, Goldberg, Ken, Byrne, Kendra, Oslund, Kenneth, Kawaharazuka, Kento, Black, Kevin, Lin, Kevin, Zhang, Kevin, Ehsani, Kiana, Lekkala, Kiran, Ellis, Kirsty, Rana, Krishan, Srinivasan, Krishnan, Fang, Kuan, Singh, Kunal Pratap, Zeng, Kuo-Hao, Hatch, Kyle, Hsu, Kyle, Itti, Laurent, Chen, Lawrence Yunliang, Pinto, Lerrel, Fei-Fei, Li, Tan, Liam, Fan, Linxi "Jim", Ott, Lionel, Lee, Lisa, Weihs, Luca, Chen, Magnum, Lepert, Marion, Memmel, Marius, Tomizuka, Masayoshi, Itkina, Masha, Castro, Mateo Guaman, Spero, Max, Du, Maximilian, Ahn, Michael, Yip, Michael C., Zhang, Mingtong, Ding, Mingyu, Heo, Minho, Srirama, Mohan Kumar, Sharma, Mohit, Kim, Moo Jin, Kanazawa, Naoaki, Hansen, Nicklas, Heess, Nicolas, Joshi, Nikhil J, Suenderhauf, Niko, Liu, Ning, Di Palo, Norman, Shafiullah, Nur Muhammad Mahi, Mees, Oier, Kroemer, Oliver, Bastani, Osbert, Sanketi, Pannag R, Miller, Patrick "Tree", Yin, Patrick, Wohlhart, Paul, Xu, Peng, Fagan, Peter David, Mitrano, Peter, Sermanet, Pierre, Abbeel, Pieter, Sundaresan, Priya, Chen, Qiuyu, Vuong, Quan, Rafailov, Rafael, Tian, Ran, Doshi, Ria, Mart'in-Mart'in, Roberto, Baijal, Rohan, Scalise, Rosario, Hendrix, Rose, Lin, Roy, Qian, Runjia, Zhang, Ruohan, Mendonca, Russell, Shah, Rutav, Hoque, Ryan, Julian, Ryan, Bustamante, Samuel, Kirmani, Sean, Levine, Sergey, Lin, Shan, Moore, Sherry, Bahl, Shikhar, Dass, Shivin, Sonawani, Shubham, Tulsiani, Shubham, Song, Shuran, Xu, Sichun, Haldar, Siddhant, Karamcheti, Siddharth, Adebola, Simeon, Guist, Simon, Nasiriany, Soroush, Schaal, Stefan, Welker, Stefan, Tian, Stephen, Ramamoorthy, Subramanian, Dasari, Sudeep, Belkhale, Suneel, Park, Sungjae, Nair, Suraj, Mirchandani, Suvir, Osa, Takayuki, Gupta, Tanmay, Harada, Tatsuya, Matsushima, Tatsuya, Xiao, Ted, Kollar, Thomas, Yu, Tianhe, Ding, Tianli, Davchev, Todor, Zhao, Tony Z., Armstrong, Travis, Darrell, Trevor, Chung, Trinity, Jain, Vidhi, Kumar, Vikash, Vanhoucke, Vincent, Zhan, Wei, Zhou, Wenxuan, Burgard, Wolfram, Chen, Xi, Chen, Xiangyu, Wang, Xiaolong, Zhu, Xinghao, Geng, Xinyang, Liu, Xiyuan, Liangwei, Xu, Li, Xuanlin, Pang, Yansong, Lu, Yao, Ma, Yecheng Jason, Kim, Yejin, Chebotar, Yevgen, Zhou, Yifan, Zhu, Yifeng, Wu, Yilin, Xu, Ying, Wang, Yixuan, Bisk, Yonatan, Dou, Yongqiang, Cho, Yoonyoung, Lee, Youngwoon, Cui, Yuchen, Cao, Yue, Wu, Yueh-Hua, Tang, Yujin, Zhu, Yuke, Zhang, Yunchu, Jiang, Yunfan, Li, Yunshuang, Li, Yunzhu, Iwasawa, Yusuke, Matsuo, Yutaka, Ma, Zehan, Xu, Zhuo, Cui, Zichen Jeff, Zhang, Zichen, Fu, Zipeng, Lin, Zipeng
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretra
Externí odkaz:
http://arxiv.org/abs/2310.08864
Generalization poses a significant challenge in Multi-agent Reinforcement Learning (MARL). The extent to which an agent is influenced by unseen co-players depends on the agent's policy and the specific scenario. A quantitative examination of this rel
Externí odkaz:
http://arxiv.org/abs/2310.07218