Zobrazeno 1 - 10
of 6 933
pro vyhledávání: '"THOMPSON, A. H."'
Autor:
Aguilar-Arevalo, A. A., Biedron, S., Boissevain, J., Borrego, M., Bugel, L., Chavez-Estrada, M., Conrad, J. M., Cooper, R. L., Diaz, A., Distel, J. R., D'Olivo, J. C., Dunton, E., Dutta, B., Fields, D., Gochanour, J. R., Gold, M., Guardincerri, E., Huang, E. C., Kamp, N., Kim, D., Knickerbocker, K., Louis, W. C., Lyles, J. T. M., Mahapatra, R., Maludze, S., Mirabal, J., Newmark, D., deNiverville, P., Pandey, V., Poulson, D., Ray, H., Renner, E., Schaub, T. J., Schneider, A., Shaevitz, M. H., Smith, D., Sondheim, W., Szelc, A. M., Taylor, C., Thompson, A., Thompson, W. H., Tripathi, M., Thornton, R. T., Van Berg, R., Van de Water, R. G.
Publikováno v:
Phys.Rev.D 109 (2024) 9, 095017
A solution to the MiniBooNE excess invoking rare three-body decays of the charged pions and kaons to new states in the MeV mass scale was recently proposed as a dark-sector explanation. This class of solution illuminates the fact that, while the char
Externí odkaz:
http://arxiv.org/abs/2309.02599
Autor:
Melo, Afrânio, Lemos, Tiago S.M., Soares, Rafael M., Spina, Deris, Clavijo, Nayher, Campos, Luiz Felipe de O., Câmara, Maurício Melo, Feital, Thiago, Anzai, Thiago K., Thompson, Pedro H., Diehl, Fábio C., Pinto, José Carlos
Publikováno v:
In Digital Chemical Engineering December 2024 13
To act safely and ethically in the real world, agents must be able to reason about harm and avoid harmful actions. However, to date there is no statistical method for measuring harm and factoring it into algorithmic decisions. In this paper we propos
Externí odkaz:
http://arxiv.org/abs/2204.12993
Publikováno v:
Journal of Chemical Physics; 8/14/2024, Vol. 161 Issue 6, p1-13, 13p
Autor:
Aguilar-Arevalo, A. A., Alves, D. S. M., Biedron, S., Boissevain, J., Borrego, M., Bugel, L., Chavez-Estrada, M., Conrad, J. M., Cooper, R. L., Diaz, A., Distel, J. R., D'Olivo, J. C., Dunton, E., Dutta, B., Fields, D., Gochanour, J. R., Gold, M., Guardincerri, E., Huang, E. C., Kamp, N., Kim, D., Knickerbocker, K., Louis, W. C., Lyles, J. T. M., Mahapatra, R., Maludze, S., Mirabal, J., Mishra, N., Newmark, D., deNiverville, P., Pandey, V., Poulson, D., Ray, H., Renner, E., Schaub, T. J., Schneider, A., Shaevitz, M. H., Smith, D., Sondheim, W., Szelc, A. M., Taylor, C., Thompson, A., Thompson, W. H., Tripathi, M., Thornton, R. T., Van Berg, R., Van de Water, R. G., Verma, S.
Publikováno v:
Phys.Rev.D 107 (2023) 9, 095036
We show results from the Coherent CAPTAIN Mills (CCM) 2019 engineering run which begin to constrain regions of parameter space for axion-like particles (ALPs) produced in electromagnetic particle showers in an 800 MeV proton beam dump, and further in
Externí odkaz:
http://arxiv.org/abs/2112.09979
Autor:
Cha, Geunyeong, Chung, Misook L., Heebner, Nicholas R., Bronas, Ulf G., Biddle, Martha J., Lin, Chin-Yen, Kang, JungHee, Wu, Jia-Rong, Thompson, Jessica H., Thapa, Ashmita, Moser, Debra K.
Publikováno v:
In Contemporary Clinical Trials Communications August 2024 40
Publikováno v:
Managerial Finance, 2023, Vol. 50, Issue 2, pp. 386-395.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/MF-05-2023-0325
Training neural networks using limited annotations is an important problem in the medical domain. Deep Neural Networks (DNNs) typically require large, annotated datasets to achieve acceptable performance which, in the medical domain, are especially d
Externí odkaz:
http://arxiv.org/abs/2110.08589
Autor:
Denoyer, Ludovic, de la Fuente, Alfredo, Duong, Song, Gaya, Jean-Baptiste, Kamienny, Pierre-Alexandre, Thompson, Daniel H.
SaLinA is a simple library that makes implementing complex sequential learning models easy, including reinforcement learning algorithms. It is built as an extension of PyTorch: algorithms coded with \SALINA{} can be understood in few minutes by PyTor
Externí odkaz:
http://arxiv.org/abs/2110.07910
Autor:
Aguilar-Arevalo, A. A., Alves, D. S. M., Biedron, S., Boissevain, J., Borrego, M., Chavez-Estrada, M., Chavez, A., Conrad, J. M., Cooper, R. L., Diaz, A., Distel, J. R., D'Olivo, J. C., Dunton, E., Dutta, B., Elliott, A., Evans, D., Fields, D., Greenwood, J., Gold, M., Gordon, J., Guarincerri, E., Huang, E. C., Kamp, N., Kelsey, C., Knickerbocker, K., Lake, R., Louis, W. C., Mahapatra, R., Maludze, S., Mirabal, J., Moreno, R., Neog, H., deNiverville, P., Pandey, V., Plata-Salas, J., Poulson, D., Ray, H., Renner, E., Schaub, T. J., Shaevitz, M. H., Smith, D., Sondheim, W., Szelc, A. M., Taylor, C., Thompson, W. H., Tripathi, M., Thornton, R. T., Van Berg, R., Van de Water, R. G., Verma, S., Walker, K.
Publikováno v:
Physical Review Letters Vol. 129, No. 2 (2022)
We report the first results of a search for leptophobic dark matter (DM) from the Coherent CAPTAIN-Mills (CCM) liquid argon (LAr) detector. An engineering run with 120 photomultiplier tubes (PMTs) and $17.9 \times 10^{20}$ protons-on-target (POT) was
Externí odkaz:
http://arxiv.org/abs/2109.14146