Zobrazeno 1 - 10
of 18
pro vyhledávání: '"THOMAS POLSTRA"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 7 (2019)
We study $F$-signature under proper birational morphisms $\unicode[STIX]{x1D70B}:Y\rightarrow X$, showing that $F$-signature strictly increases for small morphisms or if $K_{Y}\leqslant \unicode[STIX]{x1D70B}^{\ast }K_{X}$. In certain cases, we can e
Externí odkaz:
https://doaj.org/article/25600c40db244997ab8e1047b58a5f6c
Publikováno v:
Journal of Algebra. 610:773-792
Autor:
Ian Aberbach, Thomas Polstra
Publikováno v:
Journal of Algebra. 605:37-57
Autor:
Thomas Polstra, Austyn Simpson
Publikováno v:
International Mathematics Research Notices.
We show that $F$-purity deforms in local ${\mathbb {Q}}$-Gorenstein rings of prime characteristic $p>0$. Furthermore, we show that $F$-purity is ${\mathfrak {m}}$-adically stable in local Cohen–Macaulay ${\mathbb {Q}}$-Gorenstein rings.
Autor:
Thomas Polstra
Publikováno v:
International Mathematics Research Notices. 2022:2086-2094
It is shown that for any local strongly $F$-regular ring there exists natural number $e_0$ so that if $M$ is any finitely generated maximal Cohen–Macaulay module, then the pushforward of $M$ under the $e_0$th iterate of the Frobenius endomorphism c
Autor:
Ilya Smirnov, Thomas Polstra
Publikováno v:
Nagoya Mathematical Journal. 245:229-231
Unfortunately, there is a mistake in [PS, Lemma 3.10] which invalidates [PS, Theorem 3.12]. We show that the theorem still holds if the ring is assumed to be Gorenstein.
Publikováno v:
Michigan Mathematical Journal.
We extend the notion of Frobenius Betti numbers to large classes of finitely generated modules over rings of prime characteristic, which are not assumed to be local. To do so, we introduce new invariants, which we call Frobenius Euler characteristics
Publikováno v:
Journal of Singularities. 23
We further the classification of rational surface singularities. Suppose $(S, \mathfrak{n}, \mathcal{k})$ is a strictly Henselian regular local ring of mixed characteristic $(0, p > 5)$. We classify functions $f$ for which $S/(f)$ has an isolated rat
Autor:
Thomas Polstra, Karl Schwede
Suppose $R$ is a $\mathbb{Q}$-Gorenstein $F$-finite and $F$-pure ring of prime characteristic $p>0$. We show that if $I\subseteq R$ is a compatible ideal (with all $p^{-e}$-linear maps) then there exists a module finite extension $R\to S$ such that t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a82c930e57241a1a1c859bf5f5f4339
Autor:
Kevin Tucker, Thomas Polstra
Publikováno v:
Algebra Number Theory 12, no. 1 (2018), 61-97
We present a unified approach to the study of Hilbert-Kunz multiplicity, F-signature, and related limits governed by Frobenius and Cartier linear actions in positive characteristic commutative algebra. We introduce general techniques that give vastly