Zobrazeno 1 - 10
of 69
pro vyhledávání: '"THIERRY DAUDÉ"'
This volume compiles notes from four mini courses given at the summer school on asymptotic analysis in general relativity, held at the Institut Fourier in Grenoble, France. It contains an up-to-date panorama of modern techniques in the asymptotic ana
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riem
Externí odkaz:
https://doaj.org/article/dd20bd919b734980a5a9d50e3f762787
Publikováno v:
The Journal of Geometric Analysis
The Journal of Geometric Analysis, Springer, In press
The Journal of Geometric Analysis, Springer, In press
In this paper, we study the amount of information contained in the Steklov spectrum of some compact manifolds with connected boundary equipped with a warped product metric. Examples of such manifolds can be thought of as deformed balls in $${\mathbb
Publikováno v:
Annales de l'Institut Fourier
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, Volume 69 (n°1), pp.119-170
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2019, Volume 69 (n°1), pp.119-170
International audience; In this paper, we give some simple counterexamples to uniqueness for the Calderon problem on Riemannian manifolds with boundary when the Dirichlet and Neumann data are measured on disjoint sets of the boundary. We provide coun
Publikováno v:
Annales mathématiques du Québec
Annales mathématiques du Québec, Springer, In press
Annales mathématiques du Québec, Springer, In press
International audience; This paper is devoted to the analysis of Steklov eigenvalues and Steklov eigenfunctions on a class of warped product Riemannian manifolds $(M,g)$ whose boundary $\partial M$ consists in two distinct connected components $\Gamm
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1440bb0b9383698c273a28582a52a24b
http://arxiv.org/abs/2103.13889
http://arxiv.org/abs/2103.13889
Publikováno v:
Journal of Spectral Theory
Journal of Spectral Theory, European Mathematical Society, In press
Journal of Spectral Theory, European Mathematical Society, In press
Conformally St{\"a}ckel manifolds can be characterized as the class of n-dimensional pseudo-Riemannian manifolds (M, G) on which the Hamilton-Jacobi equation G($\nabla$u, $\nabla$u) = 0 for null geodesics and the Laplace equation --$\Delta$ G $\psi$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fbaf7985780a34ef312d9eedd9470a82
https://hal.archives-ouvertes.fr/hal-02277206/file/CalderonStackel-September03.pdf
https://hal.archives-ouvertes.fr/hal-02277206/file/CalderonStackel-September03.pdf
Publikováno v:
Forum of Mathematics, Sigma. 8
We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riem
Publikováno v:
Annales Henri Poincare
Annales Henri Poincare, 2019, pp.859-887
Annales Henri Poincare, 2019, pp.859-887
We show that there is generically non-uniqueness for the anisotropic Calder\'on problem at fixed frequency when the Dirichlet and Neumann data are measured on disjoint sets of the boundary of a given domain. More precisely, we first show that given a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d0387eb7b90859715e0dbed078ebe3c3
https://hal.archives-ouvertes.fr/hal-01450001
https://hal.archives-ouvertes.fr/hal-01450001
Publikováno v:
Symmetry, Integrability and Geometry : Methods and Applications
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2019, 15 (069)
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2019, 15 (069)
42 pages; International audience; Painlevé metrics are a class of Riemannian metrics which generalize the well-known separable metrics of Stäckel to the case in which the additive separation of variables for the Hamilton-Jacobi equation is achieved
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::54804eb43a5363b5db4dfd13492c5a7b
https://hal.science/hal-02080765
https://hal.science/hal-02080765
Publikováno v:
Journal of Spectral Theory
Journal of Spectral Theory, European Mathematical Society, 2020, 10 (2), pp.703-746
Journal of Spectral Theory, European Mathematical Society, 2020, 10 (2), pp.703-746
In this paper, we investigate the anisotropic Calder{\'o}n problem on cylindrical Riemannian manifolds with boundary having two ends and equipped with singular metrics of (simple or double) warped product type, that is whose warping factors only depe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7d0d580104b8309516d7ca5ed04dae16
http://arxiv.org/abs/1805.05627
http://arxiv.org/abs/1805.05627