Zobrazeno 1 - 10
of 39
pro vyhledávání: '"THACKER, DEBLEENA"'
We study internal diffusion limited aggregation on $\mathbb{Z}$, where a cluster is grown by sequentially adding the first site outside the cluster visited by each random walk dispatched from the origin. We assume that the increment distribution $X$
Externí odkaz:
http://arxiv.org/abs/2411.10113
Autor:
Ruszel, Wioletta M., Thacker, Debleena
Consider a generalized time-dependent P\'olya urn process defined as follows. Let $d\in \mathbb{N}$ be the number of urns/colors. At each time $n$, we distribute $\sigma_n$ balls randomly to the $d$ urns, proportionally to $f$, where $f$ is a valid r
Externí odkaz:
http://arxiv.org/abs/2201.12603
Autor:
Janson, Svante, Thacker, Debleena
We consider the continuous-time version of the random digital search tree, and construct a coupling with a border aggregation model as studied in Thacker and Volkov (2018), showing a relation between the height of the tree and the time required for a
Externí odkaz:
http://arxiv.org/abs/2004.13957
Publikováno v:
Journal of Applied Probability, 57(3): 853 - 865 2020
We consider the generalization of the P\'olya urn scheme with possibly infinite many colors as introduced in \cite{Th-Thesis, BaTH2014, BaTh2016, BaTh2017}. For countable many colors, we prove almost sure convergence of the urn configuration under \e
Externí odkaz:
http://arxiv.org/abs/1904.06144
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Thacker, Debleena, Volkov, Stanislav
Start with a graph with a subset of vertices called {\it the border}. A particle released from the origin performs a random walk on the graph until it comes to the immediate neighbourhood of the border, at which point it joins this subset thus increa
Externí odkaz:
http://arxiv.org/abs/1702.01077
Publikováno v:
Journal of Applied Probability, 2020 Sep 01. 57(3), 853-865.
Externí odkaz:
https://www.jstor.org/stable/48656285
In this work we generalize Polya urn schemes with possibly infinitely many colors and extend the earlier models described in [4, 5, 7]. We provide a novel and unique approach of representing the observed sequence of colors in terms a branching Markov
Externí odkaz:
http://arxiv.org/abs/1606.05317
Autor:
Cotar, Codina, Thacker, Debleena
In this paper we introduce a new simple but powerful general technique for the study of edge- and vertex-reinforced processes with super-linear reinforcement, based on the use of order statistics for the number of edge, respectively of vertex, traver
Externí odkaz:
http://arxiv.org/abs/1509.00807
In this work we consider the \emph{infinite color urn model} associated with a bounded increment random walk on $\Zbold^d$. This model was first introduced by Bandyopadhyay and Thacker (2013). We prove that the rate of convergence of the expected con
Externí odkaz:
http://arxiv.org/abs/1310.5751