Zobrazeno 1 - 10
of 13 728
pro vyhledávání: '"TESEI A."'
Autor:
Sinai, Nicolai1 (AUTHOR) nicolai.sinai@ames.ox.ac.uk
Publikováno v:
Journal of the International Qur'anic Studies Association. 2024, Vol. 9 Issue 1, p57-118. 62p.
Autor:
Tesei, Andrea1 (AUTHOR) a.tesei@qmul.ac.uk
Publikováno v:
Economic Policy. Oct2022, Vol. 37 Issue 112, p749-751. 3p.
Recent years have seen tremendous developments in the use of machine learning models to link amino acid sequence, structure and function of folded proteins. These methods are, however, rarely applicable to the wide range of proteins and sequences tha
Externí odkaz:
http://arxiv.org/abs/2410.15940
Autor:
Andrea Tesei
Publikováno v:
Economic Policy. 37:749-751
We introduce a Bayesian estimation approach for the passive localization of an acoustic source in shallow water using a single mobile receiver. The proposed probabilistic focalization method estimates the time-varying source location in the presence
Externí odkaz:
http://arxiv.org/abs/2403.03384
Autor:
Giovanni Rivieccio, Marina Allegrezza, Claudia Angiolini, Simonetta Bagella, Gianmaria Bonari, Silvia Cannucci, Maria Carmela Caria, Giampiero Ciaschetti, Leopoldo De Simone, Romeo Di Pietro, Emanuele Fanfarillo, Tiberio Fiaschi, Lorenzo Gianguzzi, Francesco Mascia, Duilio Iamonico, Giacomo Mei, Francesco Minutillo, Giuseppe Misano, Antonio Morabito, Carmelo Maria Musarella, Glauco Patera, Enrico Vito Perrino, Marco Senfett, Giovanni Spampinato, Adriano Stinca, Gianmarco Tavilla, Giulio Tesei, Valeria Tomaselli, Roberto Venanzoni, Giuseppe Bazan
Publikováno v:
Plant Sociology, Vol 61, Iss 1, Pp 45-58 (2024)
New Italian data on the distribution of the Annex I Habitats are reported in this contribution. Specifically, 9 new occurrences in Natura 2000 sites are presented and 34 new cells are added in the EEA 10 km × 10 km reference grid. The new data refer
Externí odkaz:
https://doaj.org/article/8c675f8ea1d44110a60c3aae2486430b
Publikováno v:
Il Foro Italiano, 1927 Jan 01. 52, 247/248-249/250.
Externí odkaz:
https://www.jstor.org/stable/23123209
Publikováno v:
Il Foro Italiano, 1912 Jan 01. 37, 11/12-13/14.
Externí odkaz:
https://www.jstor.org/stable/23113677
Autor:
Daniele Montepietra, Giulio Tesei, João M. Martins, Micha B. A. Kunze, Robert B. Best, Kresten Lindorff-Larsen
Publikováno v:
Communications Biology, Vol 7, Iss 1, Pp 1-10 (2024)
Abstract Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensemble
Externí odkaz:
https://doaj.org/article/a3053b7b768b43cc8b142ff46ade7997