Zobrazeno 1 - 10
of 5 081
pro vyhledávání: '"TEC"'
Studies investigating the causal effects of spatially varying exposures on health$\unicode{x2013}$such as air pollution, green space, or crime$\unicode{x2013}$often rely on observational and spatially indexed data. A prevalent challenge is unmeasured
Externí odkaz:
http://arxiv.org/abs/2411.10381
Autor:
Bernárdez, Guillermo, Telyatnikov, Lev, Montagna, Marco, Baccini, Federica, Papillon, Mathilde, Ferriol-Galmés, Miquel, Hajij, Mustafa, Papamarkou, Theodore, Bucarelli, Maria Sofia, Zaghen, Olga, Mathe, Johan, Myers, Audun, Mahan, Scott, Lillemark, Hansen, Vadgama, Sharvaree, Bekkers, Erik, Doster, Tim, Emerson, Tegan, Kvinge, Henry, Agate, Katrina, Ahmed, Nesreen K, Bai, Pengfei, Banf, Michael, Battiloro, Claudio, Beketov, Maxim, Bogdan, Paul, Carrasco, Martin, Cavallo, Andrea, Choi, Yun Young, Dasoulas, George, Elphick, Matouš, Escalona, Giordan, Filipiak, Dominik, Fritze, Halley, Gebhart, Thomas, Gil-Sorribes, Manel, Goomanee, Salvish, Guallar, Victor, Imasheva, Liliya, Irimia, Andrei, Jin, Hongwei, Johnson, Graham, Kanakaris, Nikos, Koloski, Boshko, Kovač, Veljko, Lecha, Manuel, Lee, Minho, Leroy, Pierrick, Long, Theodore, Magai, German, Martinez, Alvaro, Masden, Marissa, Mežnar, Sebastian, Miquel-Oliver, Bertran, Molina, Alexis, Nikitin, Alexander, Nurisso, Marco, Piekenbrock, Matt, Qin, Yu, Rygiel, Patryk, Salatiello, Alessandro, Schattauer, Max, Snopov, Pavel, Suk, Julian, Sánchez, Valentina, Tec, Mauricio, Vaccarino, Francesco, Verhellen, Jonas, Wantiez, Frederic, Weers, Alexander, Zajec, Patrik, Škrlj, Blaž, Miolane, Nina
This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM). The challenge focused on the problem
Externí odkaz:
http://arxiv.org/abs/2409.05211
Autor:
Battiloro, Claudio, Karaismailoğlu, Ege, Tec, Mauricio, Dasoulas, George, Audirac, Michelle, Dominici, Francesca
Graph neural networks excel at modeling pairwise interactions, but they cannot flexibly accommodate higher-order interactions and features. Topological deep learning (TDL) has emerged recently as a promising tool for addressing this issue. TDL enable
Externí odkaz:
http://arxiv.org/abs/2405.15429
Autor:
Dr. C. Leónides Castellanos González, Ing. Néstor E. Céspedes Novo, Lic. Alexandra Sequeda Serrano, Tec. José Enrique Jaime Mendosa, Lic. Lady Johana Niño Vera
Publikováno v:
Agroecosistemas, Vol 6, Iss 3, Pp 57-65 (2018)
El objetivo de la presente investigación fue caracterizar microbiológicamente seis biopreparados que se producen en la de Granja Agrobiológica Sol Vida en Pamplona a los que se les atribuyen efectos biofertilizantes, bioestimulantes y antagonistas
Externí odkaz:
https://doaj.org/article/e45f1cac3ed24db7a5cb0768c7cd0ae5
Autor:
Considine, Ellen M., Nethery, Rachel C., Wellenius, Gregory A., Dominici, Francesca, Tec, Mauricio
Publikováno v:
Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25), AI for Social Impact Track. 2025
A key strategy in societal adaptation to climate change is using alert systems to prompt preventative action and reduce the adverse health impacts of extreme heat events. This paper implements and evaluates reinforcement learning (RL) as a tool to op
Externí odkaz:
http://arxiv.org/abs/2312.14196
Autor:
Tec, Mauricio, Trisovic, Ana, Audirac, Michelle, Woodward, Sophie, Hu, Jie Kate, Khoshnevis, Naeem, Dominici, Francesca
Publikováno v:
Published at ICLR 2024
Spatial confounding poses a significant challenge in scientific studies involving spatial data, where unobserved spatial variables can influence both treatment and outcome, possibly leading to spurious associations. To address this problem, we introd
Externí odkaz:
http://arxiv.org/abs/2312.00710
Publikováno v:
ACM KDD 2024
A fundamental task in causal inference is estimating the effect of distribution shift in the treatment variable. We refer to this problem as shift-response function (SRF) estimation. Existing neural network methods for causal inference lack theoretic
Externí odkaz:
http://arxiv.org/abs/2302.02560
Autor:
Tec-López, René A.1 (AUTHOR) rene.teclopez@gmail.com
Publikováno v:
Religions. Nov2024, Vol. 15 Issue 11, p1323. 17p.