Zobrazeno 1 - 10
of 1 203 331
pro vyhledávání: '"TAN, A."'
Autor:
Lu, Xudong, Chen, Yinghao, Chen, Cheng, Tan, Hui, Chen, Boheng, Xie, Yina, Hu, Rui, Tan, Guanxin, Wu, Renshou, Hu, Yan, Zeng, Yi, Wu, Lei, Bian, Liuyang, Wang, Zhaoxiong, Liu, Long, Yang, Yanzhou, Xiao, Han, Zhou, Aojun, Wen, Yafei, Chen, Xiaoxin, Ren, Shuai, Li, Hongsheng
The emergence and growing popularity of multimodal large language models (MLLMs) have significant potential to enhance various aspects of daily life, from improving communication to facilitating learning and problem-solving. Mobile phones, as essenti
Externí odkaz:
http://arxiv.org/abs/2411.10640
Understanding spatial relations is a crucial cognitive ability for both humans and AI. While current research has predominantly focused on the benchmarking of text-to-image (T2I) models, we propose a more comprehensive evaluation that includes \texti
Externí odkaz:
http://arxiv.org/abs/2411.07664
Autor:
Tan, Zhaorui, Yang, Xi, Pan, Tan, Liu, Tianyi, Jiang, Chen, Guo, Xin, Wang, Qiufeng, Nguyen, Anh, Qi, Yuan, Huang, Kaizhu, Cheng, Yuan
The differences among medical imaging modalities, driven by distinct underlying principles, pose significant challenges for generalization in multi-modal medical tasks. Beyond modality gaps, individual variations, such as differences in organ size an
Externí odkaz:
http://arxiv.org/abs/2411.06106
Confidential computing on GPUs, like NVIDIA H100, mitigates the security risks of outsourced Large Language Models (LLMs) by implementing strong isolation and data encryption. Nonetheless, this encryption incurs a significant performance overhead, re
Externí odkaz:
http://arxiv.org/abs/2411.03357
Autor:
Francisco, Kishi Kobe Yee, Apuhin, Andrane Estelle Carnicer, Tan, Myles Joshua Toledo, Byers, Mickael Cavanaugh, Maravilla, Nicholle Mae Amor Tan, Karim, Hezerul Abdul, AlDahoul, Nouar
Personalized medicine (PM) promises to transform healthcare by providing treatments tailored to individual genetic, environmental, and lifestyle factors. However, its high costs and infrastructure demands raise concerns about exacerbating health disp
Externí odkaz:
http://arxiv.org/abs/2411.02307
Yes
Introduction : Rheumatoid arthritis (RA) affects 1% of the population and is principally associated with joint inflammation. It is suggested however that muscle involvement may be one of the earliest clinical features of RA. It is therefore
Introduction : Rheumatoid arthritis (RA) affects 1% of the population and is principally associated with joint inflammation. It is suggested however that muscle involvement may be one of the earliest clinical features of RA. It is therefore
Externí odkaz:
http://hdl.handle.net/10454/18772
Autor:
Chen, Zhe, Wang, Weiyun, Cao, Yue, Liu, Yangzhou, Gao, Zhangwei, Cui, Erfei, Zhu, Jinguo, Ye, Shenglong, Tian, Hao, Liu, Zhaoyang, Gu, Lixin, Wang, Xuehui, Li, Qingyun, Ren, Yimin, Chen, Zixuan, Luo, Jiapeng, Wang, Jiahao, Jiang, Tan, Wang, Bo, He, Conghui, Shi, Botian, Zhang, Xingcheng, Lv, Han, Wang, Yi, Shao, Wenqi, Chu, Pei, Tu, Zhongying, He, Tong, Wu, Zhiyong, Deng, Huipeng, Ge, Jiaye, Chen, Kai, Dou, Min, Lu, Lewei, Zhu, Xizhou, Lu, Tong, Lin, Dahua, Qiao, Yu, Dai, Jifeng, Wang, Wenhai
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data
Externí odkaz:
http://arxiv.org/abs/2412.05271
Autor:
XENON Collaboration, Aprile, E., Aalbers, J., Abe, K., Maouloud, S. Ahmed, Althueser, L., Andrieu, B., Angelino, E., Martin, D. Antón, Arneodo, F., Baudis, L., Bazyk, M., Bellagamba, L., Biondi, R., Bismark, A., Boese, K., Brown, A., Bruno, G., Budnik, R., Cai, C., Capelli, C., Cardoso, J. M. R., Chávez, A. P. Cimental, Colijn, A. P., Conrad, J., Cuenca-García, J. J., D'Andrea, V., Garcia, L. C. Daniel, Decowski, M. P., Deisting, A., Di Donato, C., Di Gangi, P., Diglio, S., Eitel, K., Morabit, S. el, Elykov, A., Ferella, A. D., Ferrari, C., Fischer, H., Flehmke, T., Flierman, M., Fulgione, W., Fuselli, C., Gaemers, P., Gaior, R., Galloway, M., Gao, F., Ghosh, S., Giacomobono, R., Glade-Beucke, R., Grandi, L., Grigat, J., Guan, H., Guida, M., Gyorgy, P., Hammann, R., Higuera, A., Hils, C., Hoetzsch, L., Hood, N. F., Iacovacci, M., Itow, Y., Jakob, J., Joerg, F., Kaminaga, Y., Kara, M., Kavrigin, P., Kazama, S., Kobayashi, M., Koke, D., Kopec, A., Landsman, H., Lang, R. F., Levinson, L., Li, I., Li, S., Liang, S., Lin, Y. -T., Lindemann, S., Lindner, M., Liu, K., Liu, M., Loizeau, J., Lombardi, F., Long, J., Lopes, J. A. M., Luce, T., Ma, Y., Macolino, C., Mahlstedt, J., Mancuso, A., Manenti, L., Marignetti, F., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, E., Mastroianni, S., Melchiorre, A., Merz, J., Messina, M., Michael, A., Miuchi, K., Molinario, A., Moriyama, S., Morá, K., Mosbacher, Y., Murra, M., Müller, J., Ni, K., Oberlack, U., Paetsch, B., Pan, Y., Pellegrini, Q., Peres, R., Peters, C., Pienaar, J., Pierre, M., Plante, G., Pollmann, T. R., Principe, L., Qi, J., Qin, J., García, D. Ramírez, Rajado, M., Singh, R., Sanchez, L., Santos, J. M. F. dos, Sarnoff, I., Sartorelli, G., Schreiner, J., Schulte, P., Eißing, H. Schulze, Schumann, M., Lavina, L. Scotto, Selvi, M., Semeria, F., Shagin, P., Shi, S., Shi, J., Silva, M., Simgen, H., Szyszka, C., Takeda, A., Takeuchi, Y., Tan, P. -L., Thers, D., Toschi, F., Trinchero, G., Tunnell, C. D., Tönnies, F., Valerius, K., Vecchi, S., Vetter, S., Solar, F. I. Villazon, Volta, G., Weinheimer, C., Weiss, M., Wenz, D., Wittweg, C., Wu, V. H. S., Xing, Y., Xu, D., Xu, Z., Yamashita, M., Yang, L., Ye, J., Yuan, L., Zavattini, G., Zhong, M.
Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equ
Externí odkaz:
http://arxiv.org/abs/2412.05264
Large Language Models (LLMs) have been widely used in various tasks, motivating us to develop an LLM-based assistant for videos. Instead of training from scratch, we propose a module to transform arbitrary well-trained image-based LLMs into video-LLM
Externí odkaz:
http://arxiv.org/abs/2412.05185
Text-to-motion generation is essential for advancing the creative industry but often presents challenges in producing consistent, realistic motions. To address this, we focus on fine-tuning text-to-motion models to consistently favor high-quality, hu
Externí odkaz:
http://arxiv.org/abs/2412.05095