Zobrazeno 1 - 10
of 149
pro vyhledávání: '"T. Vasileva"'
Autor:
Biser K. Borisov, Vanya T. Vasileva
Publikováno v:
Journal of IMAB, Vol 29, Iss 3, Pp 5045-5048 (2023)
Purpose: Catheter-related infections and thrombosis are the most common complications associated with the use of tunneled hemodialysis catheters. The aim of our study was to determine the incidence of these complications in patients who underwent "l
Externí odkaz:
https://doaj.org/article/3f73915ef3b649b19a52cbfa09e10a4f
Autor:
Maria T. Vasileva
Publikováno v:
Mathematics, Vol 11, Iss 22, p 4620 (2023)
This paper discusses the Topp-Leone-G power series class of distributions. The greatest attention is paid to the investigation of intrinsic characteristic “saturation” to the horizontal asymptote in the Hausdorff sense. Some estimates for the val
Externí odkaz:
https://doaj.org/article/7089a2b5dc3f446e85a917202e5ba0a9
Autor:
Maria T. Vasileva
Publikováno v:
Axioms, Vol 11, Iss 4, p 149 (2022)
The paper deals with two general families of cumulative distribution functions based on arctangent function. We provide analysis of the error of the best one-sided Hausdorff approximation for some special cases of these families. We obtain precious e
Externí odkaz:
https://doaj.org/article/6bf10235f0b540d2b8c485b806c4c0d9
Autor:
Petko D. Proinov, Maria T. Vasileva
Publikováno v:
Mathematics, Vol 9, Iss 16, p 1855 (2021)
One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s itera
Externí odkaz:
https://doaj.org/article/08bd1d00477a4c43a2596d529ce5783b
Autor:
Maria T. Vasileva
Publikováno v:
Algorithms, Vol 13, Iss 12, p 324 (2020)
In 2020 Dombi and Jónás (Acta Polytechnica Hungarica 17:1, 2020) introduced a new four parameter probability distribution which they named the pliant probability distribution family. One of the special members of this family is the so-called omega
Externí odkaz:
https://doaj.org/article/304802862aa54db0b7878e041f80c2e8
Autor:
Petko D. Proinov, Maria T. Vasileva
Publikováno v:
Symmetry, Vol 12, Iss 11, p 1801 (2020)
In 1977, Nourein (Intern. J. Comput. Math. 6:3, 1977) constructed a fourth-order iterative method for finding all zeros of a polynomial simultaneously. This method is also known as Ehrlich’s method with Newton’s correction because it is obtained
Externí odkaz:
https://doaj.org/article/c1d3cfb4ba774e8eb46b8cd07b2ea55e
Autor:
Petko D. Proinov, Maria T. Vasileva
Publikováno v:
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Maria T. Vasileva, Petko D. Proinov
Publikováno v:
Mathematics
Volume 9
Issue 16
Mathematics, Vol 9, Iss 1855, p 1855 (2021)
Volume 9
Issue 16
Mathematics, Vol 9, Iss 1855, p 1855 (2021)
One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s itera