Zobrazeno 1 - 10
of 28
pro vyhledávání: '"T. R. Hamlett"'
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 20, Iss 3, Pp 433-442 (1997)
An ideal on a set X is a nonempty collection of subsets of X closed under the operations of subset and finite union. Given a topological space X and an ideal ℐ of subsets of X, X is defined to be ℐ-paracompact if every open cover of the space adm
Externí odkaz:
https://doaj.org/article/10287525e8be4590923d1d8c7dea83f1
Autor:
T. R. Hamlett, David Rose
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 13, Iss 3, Pp 507-512 (1990)
An ideal on a set X is a nonempty collection of subsets of X closed under the operations of subset (heredity) and finite unions (additivity). Given a topological space (X,τ) an ideal ℐ on X and A⊆X, ψ(A) is defined as ⋃{U∈τ:U−A∈ℐ}. A
Externí odkaz:
https://doaj.org/article/41af18cd8e4b4b0c8bf4e147a621206b
Autor:
David A. Rose, T. R. Hamlett
Publikováno v:
General Topology and Applications
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4f4319eb1448a0e7e438e609f167aa03
https://doi.org/10.1201/9781003066743-21
https://doi.org/10.1201/9781003066743-21
Autor:
T R Hamlett, L L Herrington
The authors'purpose in writing this paper is to provide an elementary exposition of the results relating to functions with closed and p-closed graphs in a setting of general topology.
Autor:
T. R. Hamlett, Dragan Jankovic
Publikováno v:
Annals of the New York Academy of Sciences. 728:41-49
An ideal on a set X is a nonempty collection of subsets closed under the operations of finite union and subset. The concepts of parabounded and countably bounded subsets are defined as well as regularity with respect to an ideal I(i.e., I-regular). T
Publikováno v:
Annals of the New York Academy of Sciences. 704:309-321
By considering lower density operators and their induced topologies in a general setting, some results of S. Scheinberg and E. Ľazarow et al. are unified and generalized. It is also shown that every σ-finite complete measure space (X, M, m) has a l
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 20, Iss 3, Pp 433-442 (1997)
An ideal on a setXis a nonempty collection of subsets ofXclosed under the operations of subset and finite union. Given a topological spaceXand an idealℐof subsets ofX,Xis defined to beℐ-paracompact if every open cover of the space admits a locall
Autor:
T. R. Hamlett, David Rose
Publikováno v:
Rocky Mountain J. Math. 22, no. 4 (1992), 1329-1339
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::62bb811a5465e1f39be2c5102f0b312d
http://projecteuclid.org/euclid.rmjm/1181072659
http://projecteuclid.org/euclid.rmjm/1181072659
Autor:
T. R. Hamlett, Dragan Jankovic
Publikováno v:
The American Mathematical Monthly. 97:295
(1990). New Topologies from Old via Ideals. The American Mathematical Monthly: Vol. 97, No. 4, pp. 295-310.
Autor:
T. R. Hamlett, Paul E. Long
Publikováno v:
Proceedings of the American Mathematical Society. 53:470-476
For a function f : X → Y f:X \to Y , the cluster set of f f at x ϵ X x\epsilon X is the set of all y ϵ Y y\epsilon Y such that there exists a filter F \mathcal {F} on X X converging to x x and the filter generated by f ( F ) f(\mathcal {F}) conve