Zobrazeno 1 - 10
of 112
pro vyhledávání: '"T. L. Miller"'
Publikováno v:
Complex Analysis and Operator Theory. 10:187-203
We construct integral operators associated with strongly continuous groups of invertible isometries on the Hardy spaces and the weighted Bergman spaces of the upper half plane. Specifically, we obtain the spectrum and point spectrum of the generator
Autor:
J, Jao, W, Yu, K, Patel, T L, Miller, B, Karalius, M E, Geffner, L A, DiMeglio, A, Mirza, J S, Chen, M, Silio, E J, McFarland, R B, Van Dyke, D, Jacobson, Anai, Cuadra
Publikováno v:
HIV medicine. 19(3)
Objectives Dyslipidaemia is common in perinatally HIV-infected (PHIV) youth receiving protease inhibitors (PIs). Few studies have evaluated longitudinal lipid changes in PHIV youth after switch to newer PIs. Methods We compared longitudinal changes i
Publikováno v:
Journal of Mathematical Analysis and Applications. 414:188-210
We determine the spectrum and essential spectrum as well as resolvent estimates for a class of integral operators T μ , ν f ( z ) = z μ − 1 ( 1 − z ) − ν ∫ 0 z f ( ξ ) ξ − μ ( 1 − ξ ) ν − 1 d ξ acting on either the analytic Be
Publikováno v:
Archiv der Mathematik. 101:269-283
In [2], operators $$P_\mu f(z):=-\frac{1}{(1-z)^{\mu+1}} \int \limits_1^z f(\zeta)(1-\zeta)^{\mu} \,d\zeta$$ and $$Q_\mu f(z):=(1-z)^{\mu-1} \int\limits_0^z f(\zeta)(1-\zeta)^{-\mu} \,d \zeta\quad (z \in \mathbb{D})$$ were investigated in the setting
Autor:
E. Albrecht, T. L. Miller
Publikováno v:
Complex Analysis and Operator Theory. 8:129-157
We investigate spectral properties of operators of the form $$\begin{aligned} P_\mu f(z):=-\frac{1}{(1-z)^{\mu +1}}\int _1^z f(\zeta )(1-\zeta )^{\mu }\,d\zeta \end{aligned}$$ and $$\begin{aligned} Q_\mu f(z):=(1-z)^{\mu -1}\int _0^z f(\zeta )(1-\zet
Publikováno v:
Journal of Mathematical Analysis and Applications. 394:656-669
We determine spectral pictures and resolvent estimates for a class of integral operators on the weighted Bergman spaces L a p ( D , m α ) for p ≥ 1 , α > − 1 , and show in particular these operators are subdecomposable. Moreover, in the case th
Publikováno v:
Czechoslovak Mathematical Journal. 57:831-842
Let T ∈ ℒ(X) be a bounded operator on a complex Banach space X. If V is an open subset of the complex plane such that λ-T is of Kato-type for each λ ∈ V, then the induced mapping f(z) ↦ (z-T)f(z) has closed range in the Frechet space of ana
Publikováno v:
Function Spaces. :311-326
Publikováno v:
Archiv der Mathematik. 85:446-459
We investigate spectral properties of integral operators of the form $$S_{g} f(z) = \frac{1}{z}\int\limits_0^z f(\omega )g(\omega )d\omega $$ acting on Banach spaces of analytic functions on the unit disc. In the case that g is a rational function, a
Publikováno v:
Integral Equations and Operator Theory. 51:257-274
In the general context of rationally cyclic operators on Banach spaces, this article centers around descriptions of the set of analytic bounded point evaluations in the spirit of function theoretic operator theory. In particular, a classical formula