Zobrazeno 1 - 10
of 21
pro vyhledávání: '"T. J. Rivlin"'
Publikováno v:
Journal of the London Mathematical Society. :309-328
For the infinite triangular arrays of points whose rows consist of (i) the nth roots of unity, (ii) the extrema of Chebyshev polynomials Tn(x) on [—1,1], and (iii) the zeros of Tn(x), we consider the corresponding sequences of divided difference fu
Autor:
T. J. Rivlin
Publikováno v:
Joseph L. Walsh ISBN: 9781461274193
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::69dfa0b682012063067c717bc4be02da
https://doi.org/10.1007/978-1-4612-2114-2_38
https://doi.org/10.1007/978-1-4612-2114-2_38
Autor:
F. Schipp, T. J. Rivlin
Publikováno v:
Joseph L. Walsh ISBN: 9781461274193
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c2332fb32e32cc2c70824251edb2218e
https://doi.org/10.1007/978-1-4612-2114-2_12
https://doi.org/10.1007/978-1-4612-2114-2_12
Autor:
T. J. Rivlin
Publikováno v:
Papers in Algebra, Analysis and Statistics. :121-151
Publikováno v:
Calcolo. 24:1-21
We examine the error in the optimal estimation of∫−11f(t)w(t)dt by a quadrature formula using values off at equally spaced points of (−1, 1) or at the zeros of ultraspherical polynomials. Heref is known to be an analytic function in the unit di
Publikováno v:
IMA Journal of Numerical Analysis. 3:327-332
Autor:
M. S. Cheema, V. O. S. Olunloyo, A. D. Weiss, G. Bachman, D. J. Troy, Joel Brawley, Joseph Kist, A. G. Konheim, T. J. Rivlin, V. K. Rohatgi, M. Edelstein, P. K. Subramanian, S. F. Becker, S. A. Naimpally
Publikováno v:
The American Mathematical Monthly. 73:487-515
Autor:
T. J. Rivlin
Publikováno v:
SIAM Review. 1:60-63
Autor:
T. J. Rivlin, E. W. Cheney
Publikováno v:
SIAM Journal on Numerical Analysis. 3:311-320
[. xEX If a finite-dimensional linear subspace M is prescribed in C[X] and if f is any element of C[X], then there exists inM an element of best approximation to f. In other words, the distance from f to the setM is achieved by at least one element o
Autor:
T. J. Rivlin
Publikováno v:
Proceedings of the American Mathematical Society. 6:597-602
Ostrowski has shown that a Taylor series f(z)= n aZnn with finite nonzero radius of convergence overconverges in a neighborhood of each point of the circle of convergence at which f(z) is regular if an=O for mk