Zobrazeno 1 - 9
of 9
pro vyhledávání: '"T. G. Proctor"'
Autor:
T. G. Proctor
Publikováno v:
The College Mathematics Journal. 26:111-117
(1995). Distinguished Oscillations of a Forced Harmonic Oscillator. The College Mathematics Journal: Vol. 26, No. 2, pp. 111-117.
Autor:
T. G. Proctor
Publikováno v:
Proceedings of the American Mathematical Society. 45:73-79
A modified form of the Alekseev variation of constants equation is used to relate the solutions of systems of the form x ˙ = f ( t , x , λ ) , λ \dot x = f(t,x,\lambda ),\lambda in R m {R^m} and the perturbed system y ˙ = f ( t , y , ψ ( t ) ) +
Autor:
R.E. Fennell, T. G. Proctor
Publikováno v:
Journal of Mathematical Analysis and Applications. 52(3):583-593
Autor:
T. G. Proctor, R. E. Fennell
Publikováno v:
Proceedings of the American Mathematical Society. 31:499-504
A version of the variation of constants formula for nonlinear systems is used to study the comparative asymptotic behavior of the systems x ′ = f ( t , x ) x’ = f(t,x) and y ′ = f ( t , y ) + g ( t , y ) y’ = f(t,y) + g(t,y) .
Autor:
T. G. Proctor
Publikováno v:
Journal of Mathematical Analysis and Applications. 28(1):181-187
Uniqueness theorem and successive approximations for delay functional differential equations, noting scalar problems
Autor:
T. G. Proctor
Publikováno v:
Proceedings of the American Mathematical Society. 22:503-508
Calculation of the characteristic multipliers is not routine since in general one does not know even one nontrivial solution of (1). However it is possible to obtain convergent series representations for the solutions and thus calculate approximate v
Autor:
G. W. Marrah, T. G. Proctor
Publikováno v:
Proceedings of the American Mathematical Society. 34:121-121
Autor:
T. G. Proctor
Publikováno v:
Proceedings of the American Mathematical Society. 31:219
Autor:
R. E. Fennell, T. G. Proctor
Publikováno v:
Transactions of the American Mathematical Society. 185:401-401
Scalar and vector comparison techniques are used to study the comparative asymptotic behavior of the systems (I) x' = f(t,x) and (2) y' = f(t,y) + g(t,y). Conditions are given which allow bounds for the solutions of (2) to-be obtained assuming a know