Zobrazeno 1 - 10
of 20
pro vyhledávání: '"T. Bayrakdar"'
Autor:
Z. Ok Bayrakdar, T. Bayrakdar
Publikováno v:
Advances in Mathematical Physics, Vol 2018 (2018)
We construct metric connection associated with a first-order differential equation by means of the generator set of a Pfaffian system on a submanifold of an appropriate first-order jet bundle. We firstly show that the inviscid and viscous Burgers’
Externí odkaz:
https://doaj.org/article/e268c81dda864889bb71275124d61cb3
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
T. Bayrakdar, Zahide Ok Bayrakdar
Publikováno v:
Issue: 28 1288-1290
Avrupa Bilim ve Teknoloji Dergisi
Avrupa Bilim ve Teknoloji Dergisi
In this work a two-dimensional smooth autonomous dynamical system is regarded as a three-dimensional Riemannian manifold and it is shown that the scalar curvature of a linear dynamical system $\text{d}x/\text{d}t=ax+by$, $\text{d}y/\text{d}t=cx+dy$ i
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
T. Bayrakdar, Z. Ok Bayrakdar
Publikováno v:
Advances in Mathematical Physics, Vol 2018 (2018)
WOS: 000425432000001
We construct metric connection associated with a first-order differential equation by means of the generator set of a Pfaffian system on a submanifold of an appropriate first-order jet bundle. We firstly show that the invisc
We construct metric connection associated with a first-order differential equation by means of the generator set of a Pfaffian system on a submanifold of an appropriate first-order jet bundle. We firstly show that the invisc
Autor:
T. Bayrakdar, A. A. Ergin
Publikováno v:
Journal of Dynamical Systems and Geometric Theories. 15:163-176
Hamiltonian vector field, Poisson vector field and the gradient of Hamiltonian function defines Darboux frame along an integral curve of a Hamiltonian dynamical system on a surface whose normal vector field corresponds to the Poisson structure for a
Autor:
T. Bayrakdar, Zahide Ok Bayrakdar
Publikováno v:
Volume: 43, Issue: 5 2540-2548
Turkish Journal of Mathematics
Turkish Journal of Mathematics
Bayrakdar, Tuna/0000-0001-8777-5842
WOS:000488222100038
In this work we consider the Riemannian geometry associated with the differential equations of one dimensional simple and damped linear harmonic oscillators. We show that the sectional
WOS:000488222100038
In this work we consider the Riemannian geometry associated with the differential equations of one dimensional simple and damped linear harmonic oscillators. We show that the sectional
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f34e2caaf7f6ef3d1cfbdabb9d25f9f
https://hdl.handle.net/20.500.11831/5049
https://hdl.handle.net/20.500.11831/5049
Autor:
T. Bayrakdar, A. A. Ergin
Publikováno v:
Mediterranean Journal of Mathematics. 15
We show that a surface corresponding to a first-order ODE is minimal in three-dimensional Riemannian manifold which is determined by the first prolongation of $${\text {d}}y/\mathrm{d}x=p(x,y)$$ if and only if $$p_{yy}=0$$ . Accordingly, any linear f
Autor:
T. Bayrakdar, A. A. Ergin
Publikováno v:
International Journal of Geometric Methods in Modern Physics. 14:1750172
We show that all of the nonstretching curve motions specified in the Frenet–Serret frame in the literature can be described by the time evolution of an integral curve of a Hamiltonian dynamical system such that the underlying curve is a geodesic cu
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.