Zobrazeno 1 - 6
of 6
pro vyhledávání: '"T��, Tat Dat"'
Autor:
Protin, Fr��d��ric, Jules, Martel, Nguyen, Duc Thang, Nguyen, Hang T. T., Piffault, Charles, Rodr��guez, Willy, Iglesias, Susely Figueroa, T��, Tat Dat, Tuschmann, Wilderich, L��, H��ng V��n, Yeo, Tenan, Nguyen, Tien Zung
To forecast the time dynamics of an epidemic, we propose a discrete stochastic model that unifies and generalizes previous approaches to the subject. Viewing a given population of individuals or groups of individuals with given health state attribute
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dde9f0015d336b613f6a38ef2a1db5cf
http://arxiv.org/abs/2106.13463
http://arxiv.org/abs/2106.13463
In this paper, we study the Cauchy-Dirichlet problem for Parabolic complex Monge-Amp��re equations on a strongly pseudoconvex domain by the viscosity method. We extend the results in [EGZ15b] on the existence of solution and the convergence at in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::450e7f2d53adf1a8c7455055fb1fc3ed
Autor:
T��, Tat Dat
We study the K��hler-Ricci flow on compact K��hler manifolds whose canonical bundle is big. We show that the normalized K��hler-Ricci flow has long time existence in the viscosity sense, is continuous in a Zariski open set, and converges
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::04f85906deff94f32e5afded99d40bcc
Autor:
T��, Tat Dat
We prove that a general complex Monge-Amp��re flow on a Hermitian manifold can be run from an arbitrary initial condition with zero Lelong number at all points. Using this property, we confirm a conjecture of Tosatti-Weinkove: the Chern-Ricci flo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::160004bc7ea88bbd83796ba25adff01f
Autor:
T��, Tat Dat
We study the regularizing properties of complex Monge-Amp��re flows on a K��hler manifold $(X,��)$ when the initial data are $��$-psh functions with zero Lelong number at all points. We prove that the general Monge-Amp��re flow ha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6fe5262dbf07e807cf72518ef77a276a
Autor:
Tat Dat T; Centre de Mathématiques Laurent-Schwartz, École Polytechnique Cour Vaneau, 91120 Palaiseau, France., Frédéric P; Torus Actions SAS, 3 Avenue Didier Daurat, 31400 Toulouse, France., Hang NTT; Torus Actions SAS, 3 Avenue Didier Daurat, 31400 Toulouse, France., Jules M; Torus Actions SAS, 3 Avenue Didier Daurat, 31400 Toulouse, France., Duc Thang N; Torus Actions SAS, 3 Avenue Didier Daurat, 31400 Toulouse, France., Piffault C; Torus Actions SAS, 3 Avenue Didier Daurat, 31400 Toulouse, France., Willy R; Ecole Nationale de l'Aviation Civile, 7 Avenue Edouard Belin, 31400 Toulouse, France., Susely F; Torus Actions SAS, 3 Avenue Didier Daurat, 31400 Toulouse, France., Lê HV; Institute of Mathematics of the Czech Academy of Sciences, Zitna 25, 11567 Praha 1, Czech Republic., Tuschmann W; Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), Englerstr. 2, D-76131 Karlsruhe, Germany., Tien Zung N; Institut de Mathematiques de Toulouse, Université Toulouse 3, 18 Route de Narbonne, 31400 Toulouse, France.
Publikováno v:
Biology [Biology (Basel)] 2020 Dec 18; Vol. 9 (12). Date of Electronic Publication: 2020 Dec 18.