Zobrazeno 1 - 10
of 218
pro vyhledávání: '"Täuber, Uwe"'
Autor:
Täuber, Uwe C.
Stochastic, spatially extended models for predator-prey interaction display spatio-temporal structures that are not captured by the Lotka-Volterra mean-field rate equations. These spreading activity fronts reflect persistent correlations between pred
Externí odkaz:
http://arxiv.org/abs/2405.05006
Autor:
Swailem, Mohamed, Täuber, Uwe C.
Publikováno v:
Phys. Rev. E 110 (2024) 014124
Stochastic reaction-diffusion models are employed to represent many complex physical, biological, societal, and ecological systems. The macroscopic reaction rates describing the large-scale kinetics in such systems are effective, scale-dependent para
Externí odkaz:
http://arxiv.org/abs/2404.03089
Autor:
Tiani, Reda, Täuber, Uwe C.
Publikováno v:
EPL (Europhys. Lett.) 44 (2023) 11005
We numerically and analytically investigate the behavior of a non-equilibrium phase transition in the second Schl\"ogl autocatalytic reaction scheme. Our model incorporates both an interaction-induced phase separation and a bifurcation in the reactio
Externí odkaz:
http://arxiv.org/abs/2305.17726
Publikováno v:
J. Phys. A: Math Theor. 56 (2023) 225001
We apply a perturbative Doi--Peliti field-theoretical analysis to the stochastic spatially extended symmetric Rock-Paper-Scissors (RPS) and May--Leonard (ML) models, in which three species compete cyclically. Compared to the two-species Lotka--Volter
Externí odkaz:
http://arxiv.org/abs/2303.08713
Autor:
Swailem, Mohamed, Täuber, Uwe C.
Publikováno v:
Phys. Rev. E 107 (2023) 064144
We study the stochastic spatial Lotka-Volterra (LV) model for predator-prey interaction subject to a periodically varying carrying capacity. The LV model with on-site lattice occupation restrictions that represent finite food resources for the prey e
Externí odkaz:
http://arxiv.org/abs/2211.09276
Autor:
Mukhamadiarov, Ruslan, Täuber, Uwe C.
Publikováno v:
Phys. Rev. E 106 (2022) 034132
We investigate how site dilution, as would be introduced by immunization, affects the properties of the active-to-absorbing non-equilibrium phase transition in the paradigmatic Susceptible-Infectious-Recovered (SIR) model on regular cubic lattices. A
Externí odkaz:
http://arxiv.org/abs/2206.03906
Critical Dynamics of the Antiferromagnetic $O(3)$ Nonlinear Sigma Model with Conserved Magnetization
Autor:
Yao, Louie Hong, Täuber, Uwe C.
Publikováno v:
Phys. Rev. E 105 (2022) 064128
We study the near-equilibrium critical dynamics of the $O(3)$ nonlinear sigma model describing isotropic antiferromagnets with non-conserved order parameter reversibly coupled to the conserved total magnetization. To calculate response and correlatio
Externí odkaz:
http://arxiv.org/abs/2204.11145
Autor:
Serrao, Shannon R., Täuber, Uwe C.
Publikováno v:
Eur. Phys. J. B 94 (2021) 175
We study the induction and stabilization of spiral structures for the cyclic three-species stochastic May-Leonard model with asymmetric predation rates on a spatially inhomogeneous two-dimensional toroidal lattice using Monte Carlo simulations. In an
Externí odkaz:
http://arxiv.org/abs/2105.08126